函数f(x)=1/2ax^2-(2a+1)x+2lnx,1、若曲线y=f(x) 在 x=1和x=3处的切线互相平行,求a的值 是哪张卷子?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 19:37:48
函数f(x)=1/2ax^2-(2a+1)x+2lnx,1、若曲线y=f(x) 在 x=1和x=3处的切线互相平行,求a的值 是哪张卷子?
函数f(x)=1/2ax^2-(2a+1)x+2lnx,1、若曲线y=f(x) 在 x=1和x=3处的切线互相平行,求a的值 是哪张卷子?
函数f(x)=1/2ax^2-(2a+1)x+2lnx,1、若曲线y=f(x) 在 x=1和x=3处的切线互相平行,求a的值 是哪张卷子?
求导,得
f'(x)=ax-2a-1+2/x
f'(1)=a-2a-1+2=f'(3)=3a-2a-1+2/3
a=2/3
如图
定义域x>0
1)求导f'(x)=ax-(2a+1)+2/x
f'(1)=a-(2a+1)+2
f'(3)=3a-(2a+1)+2/3
由题有f'(1)=f'(3)整理即1-a=a-1/3,解得a=2/3
2)
f'(x)=ax-(2a+1)+2/x=[ax^2-(2a+1)x+2]/x=(ax-1)(x-2)/x
令f'(x)=0
...
全部展开
定义域x>0
1)求导f'(x)=ax-(2a+1)+2/x
f'(1)=a-(2a+1)+2
f'(3)=3a-(2a+1)+2/3
由题有f'(1)=f'(3)整理即1-a=a-1/3,解得a=2/3
2)
f'(x)=ax-(2a+1)+2/x=[ax^2-(2a+1)x+2]/x=(ax-1)(x-2)/x
令f'(x)=0
i)当a=<0,x1=1/a(舍去),x2=2,
由f'(x)>0,得f(x)单调递增区间x∈(0,2)
由f'(x)<0,得f(x)单调递减区间x∈(2,+∞)
ii)当1/2>a>0,0
由f'(x)<0,得f(x)单调递减区间x∈(2,1/a)
iii)当a=1/2,有f'(x)>=0,且f'(x)不恒为0,得f(x)单调递增区间x∈(0,+∞)
iiii)当a>1/2,0
由f'(x)<0,得f(x)单调递减区间x∈(1/a,2)
3)只需对任意x1 ,x2∈ (0,2]使得f(x1)
问题便转化为f(x)<-1在x∈ (0,2]恒成立
即1/2ax^2-(2a+1)x+2lnx<-1在x∈ (0,2]恒成立
分离常数a,即a>(2x-4lnx-2)/(x^2-4x),在x∈ (0,2]恒成立【注意x^2-4x<0,x∈ (0,2]】
该问题等价于a>maxh(x),其中h(x)=(2x-4lnx-2)/(x^2-4x),x∈ (0,2]
求导易得h'(x)=[2(x-2)(4lnx-x-2)]/[(x^2-4x)^2]下面判断h'(x)的符号只需判断4lnx-x-2的符号
引入F(x)=4lnx-x-2,求导得F'(X)=4/x-1=(4-x)/x,显然当x∈ (0,2],F'(x)>0得F(x)单调递增
那么F(x)
易得到x∈ (0,2],h(x)极大值为h(2)且此极大值必为其最大值。
所以maxh(x)=h(2)=ln2-1/2
由a>maxh(x),得到a的取值范围为(ln2-1/2,+∞)
收起