函数f(x)=1/2ax^2-(2a+1)x+2lnx,1、若曲线y=f(x) 在 x=1和x=3处的切线互相平行,求a的值 是哪张卷子?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 19:37:48
函数f(x)=1/2ax^2-(2a+1)x+2lnx,1、若曲线y=f(x) 在 x=1和x=3处的切线互相平行,求a的值 是哪张卷子?
xVmOV+RU[8}$d&!:]g+5L)4wJ; u`HR|^!A:>>sss g Y.[QCW^d춳Owne2_tlM_N4Z5* 8|-NܷTJl\Yr^)lJÏ|SEd w(A *N0铘⑸@;dҗf'8{2?b=ӄceE3dfh.dLPbtX$@>"Iw}$2C#zXR" CNSNp:5pTMP/)K1CI %p$ #I}~Խa%sIGIYUpR5p$jjDb"RV}6C^k̻M{VoG_uBו[assYqQY:='#9,*B[)jt 8y "hW\R(nsb.ZZ O.I%aFD^Toj3tXעO}zR`'x\9> $x}1]nC Sae8"IpBbX{0O+p^At]"{+%ټ]9T_Ԟ8NDiMr}Q(.']ZUqguh@l9O‏~ m6_m–p?^-[Q|%r?\8 L-kߝZ3ng9u w$<9{[nkhz`q+@KZR[]2Hp+j Ɲ;; 4!9iI(ԒIÙ]SNswm XdU^Y;ǜ˝,4=m|'

函数f(x)=1/2ax^2-(2a+1)x+2lnx,1、若曲线y=f(x) 在 x=1和x=3处的切线互相平行,求a的值 是哪张卷子?
函数f(x)=1/2ax^2-(2a+1)x+2lnx,1、若曲线y=f(x) 在 x=1和x=3处的切线互相平行,求a的值 是哪张卷子?

函数f(x)=1/2ax^2-(2a+1)x+2lnx,1、若曲线y=f(x) 在 x=1和x=3处的切线互相平行,求a的值 是哪张卷子?
求导,得
f'(x)=ax-2a-1+2/x
f'(1)=a-2a-1+2=f'(3)=3a-2a-1+2/3
a=2/3

如图

定义域x>0
1)求导f'(x)=ax-(2a+1)+2/x
f'(1)=a-(2a+1)+2
f'(3)=3a-(2a+1)+2/3
由题有f'(1)=f'(3)整理即1-a=a-1/3,解得a=2/3
2)
f'(x)=ax-(2a+1)+2/x=[ax^2-(2a+1)x+2]/x=(ax-1)(x-2)/x
令f'(x)=0
...

全部展开

定义域x>0
1)求导f'(x)=ax-(2a+1)+2/x
f'(1)=a-(2a+1)+2
f'(3)=3a-(2a+1)+2/3
由题有f'(1)=f'(3)整理即1-a=a-1/3,解得a=2/3
2)
f'(x)=ax-(2a+1)+2/x=[ax^2-(2a+1)x+2]/x=(ax-1)(x-2)/x
令f'(x)=0
i)当a=<0,x1=1/a(舍去),x2=2,
由f'(x)>0,得f(x)单调递增区间x∈(0,2)
由f'(x)<0,得f(x)单调递减区间x∈(2,+∞)
ii)当1/2>a>0,0由f'(x)>0,得f(x)单调递增区间x∈(0,2)U(1/a,+∞)
由f'(x)<0,得f(x)单调递减区间x∈(2,1/a)
iii)当a=1/2,有f'(x)>=0,且f'(x)不恒为0,得f(x)单调递增区间x∈(0,+∞)
iiii)当a>1/2,0由f'(x)>0,得f(x)单调递增区间x∈(0,1/a)U(2,+∞)
由f'(x)<0,得f(x)单调递减区间x∈(1/a,2)
3)只需对任意x1 ,x2∈ (0,2]使得f(x1)因为g(x)=x^2-2x=(x-1)^2-1>=-1得到min[g(x2)]=-1,x2∈ (0,2]
问题便转化为f(x)<-1在x∈ (0,2]恒成立
即1/2ax^2-(2a+1)x+2lnx<-1在x∈ (0,2]恒成立
分离常数a,即a>(2x-4lnx-2)/(x^2-4x),在x∈ (0,2]恒成立【注意x^2-4x<0,x∈ (0,2]】
该问题等价于a>maxh(x),其中h(x)=(2x-4lnx-2)/(x^2-4x),x∈ (0,2]
求导易得h'(x)=[2(x-2)(4lnx-x-2)]/[(x^2-4x)^2]下面判断h'(x)的符号只需判断4lnx-x-2的符号
引入F(x)=4lnx-x-2,求导得F'(X)=4/x-1=(4-x)/x,显然当x∈ (0,2],F'(x)>0得F(x)单调递增
那么F(x)因此当x∈ (0,2),h'(x)>0,h(x)单调递增,【当x∈ (2,4),h'(x)<0,h(x)单调递减】,
易得到x∈ (0,2],h(x)极大值为h(2)且此极大值必为其最大值。
所以maxh(x)=h(2)=ln2-1/2
由a>maxh(x),得到a的取值范围为(ln2-1/2,+∞)

收起