高中数学三角的常规的几个公式的六卦图

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 01:13:33
高中数学三角的常规的几个公式的六卦图
xWjG~@dȸ V}^ &M$zS jNb%q[h4Y *!^眙lsΜ=xpǣdbxja2u&mwNxW&>^> | N jK&vbhCLF=kUv9x5 a$dp 1,X^d@ȟkݼqGʹyWqRYKb0@6TP}=t|Nh jI:<>]K8Ry.7ڒݚ'\pv٭d-lYdox9YN}PH#x E~ONu-|&&AfGՓ86viSX[&*Ñ]PaaK]Xđ#$\J$P,R33CS|.D[[WO*Ȯ*-]GYj0;)VtO)dhsq :1RЦѳ IE=VEWֽY;k6v`>w*ЏMY l v݆.yAojHxp)#R 6md]kI5-tZU!X:X#i"l܌ņ<ڡ8|-Tw2R NPG6 nfGdgXC)`3^+R`5q%Na))"Ê0ʽ!ߪ5⛾9sf1[ =X RbUT (2XPI1x{N:_>Xd4g2e2;lO!%~ `2X^{Gauג?֓[4pn?q}>Ff VӡN&/r~AgWF#jmrj֘zWyRr_+YVso$:Oޥ.x"~ 6

高中数学三角的常规的几个公式的六卦图
高中数学三角的常规的几个公式的六卦图

高中数学三角的常规的几个公式的六卦图
倍角公式  Sin2A=2SinACosA  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1  tan2A=(2tanA)/(1-tanA^2)  (注:SinA^2 是sinA的平方 sin2(A) )  三倍角公式  sin3α=4sinα•sin(π/3+α)sin(π/3-α)  cos3α=4cosα•cos(π/3+α)cos(π/3-α)  tan3a = tan a • tan(π/3+a)• tan(π/3-a)
辅助角公式  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中  sint=B/(A^2+B^2)^(1/2)  cost=A/(A^2+B^2)^(1/2)  tant=B/A  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B  降幂公式  sin^2(α)=(1-cos(2α))/2=versin(2α)/2  cos^2(α)=(1+cos(2α))/2=covers(2α)/2  tan^2(α)=(1-cos(2α))/(1+cos(2α))  推导公式  tanα+cotα=2/sin2α  tanα-cotα=-2cot2α  1+cos2α=2cos^2α  1-cos2α=2sin^2α  1+sinα=(sinα/2+cosα/2)^2  =2sina(1-sin²a)+(1-2sin²a)sina  =3sina-4sin³a  cos3a  =cos(2a+a)  =cos2acosa-sin2asina  =(2cos²a-1)cosa-2(1-sin²a)cosa  =4cos³a-3cosa  sin3a=3sina-4sin³a  =4sina(3/4-sin²a)  =4sina[(√3/2)²-sin²a]  =4sina(sin²60°-sin²a)  =4sina(sin60°+sina)(sin60°-sina)  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]  =4sinasin(60°+a)sin(60°-a)  cos3a=4cos³a-3cosa  =4cosa(cos²a-3/4)  =4cosa[cos²a-(√3/2)²]  =4cosa(cos²a-cos²30°)  =4cosa(cosa+cos30°)(cosa-cos30°)  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}  =-4cosasin(a+30°)sin(a-30°)  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]  =-4cosacos(60°-a)[-cos(60°+a)]  =4cosacos(60°-a)cos(60°+a)
半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.  sin^2(a/2)=(1-cos(a))/2  cos^2(a/2)=(1+cos(a))/2  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))  三角和  sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγ  cos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγ  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)  两角和差  cos(α+β)=cosα•cosβ-sinα•sinβ  cos(α-β)=cosα•cosβ+sinα•sinβ  sin(α±β)=sinα•cosβ±cosα•sinβ  tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)  tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)  和差化积  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)  积化和差  sinαsinβ = [cos(α-β)-cos(α+β)] /2  cosαcosβ = [cos(α+β)+cos(α-β)]/2  sinαcosβ = [sin(α+β)+sin(α-β)]/2  cosαsinβ = [sin(α+β)-sin(α-β)]/2  诱导公式  sin(-α) = -sinα  cos(-α) = cosα  tan (—a)=-tanα  sin(π/2-α) = cosα  cos(π/2-α) = sinα  sin(π/2+α) = cosα  cos(π/2+α) = -sinα  sin(π-α) = sinα  cos(π-α) = -cosα  sin(π+α) = -sinα  cos(π+α) = -cosα  tanA= sinA/cosA  tan(π/2+α)=-cotα  tan(π/2-α)=cotα  tan(π-α)=-tanα  tan(π+α)=tanα  诱导公式记背诀窍:奇变偶不变,符号看象限  万能公式  sinα=2tan(α/2)/[1+tan^(α/2)]  cosα=[1-tan^(α/2)]/1+tan^(α/2)]  tanα=2tan(α/2)/[1-tan^(α/2)]  其它公式  (1)(sinα)^2+(cosα)^2=1  (2)1+(tanα)^2=(secα)^2  (3)1+(cotα)^2=(cscα)^2