已知3Sinb=sin(2a+b),求证a=(2,tan(a+b)),与b=(1,tana)共线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 20:28:35
已知3Sinb=sin(2a+b),求证a=(2,tan(a+b)),与b=(1,tana)共线
xN@_LJ- K:KJDB516,h E$> p~V+ݴ=|sص FIi:ثÁy>kA`g҃yv !]̢Z-a*w&r@>1v}!k$&rpU_&DKz|⑏lMKh* ?9\\'b(p+fjm 6M7%cjGNGh/X Dh AA5L/>u.ݍ ů}z7~ѓX7t/cӰΦC~hxS.^޶q+~Z

已知3Sinb=sin(2a+b),求证a=(2,tan(a+b)),与b=(1,tana)共线
已知3Sinb=sin(2a+b),求证a=(2,tan(a+b)),与b=(1,tana)共线

已知3Sinb=sin(2a+b),求证a=(2,tan(a+b)),与b=(1,tana)共线
若这两个向量共线则向量a-2b=0;
←→tan(a+b)-2tana=0; tan(a+b)=2tana
←→cosa·sin(a+b)=2sina·cos(a+b)
←→cosa·sin(a+b)+sina·cos(a+b)=3sina·cos(a+b)
←→sin[a+(a+b)]=3sina·cos(a+b); sin(2a+b)=3sina·cos(a+b);
←→3Sinb=3sina·cos(a+b);
sinb=sina·cos(a+b)=sina·(cosa·cosb-sina·sinb)=sina·cosa·cosb-sin^2a·sinb
=(1/2)sin2a·cosb-(1/2)(1-cos2a)·sinb
=(1/2)(sin2a·cosb+cos2a·sinb)-(1/2)·sinb
=(1/2)sin(2a+b) -(1/2)·sinb
=(1/2)Sinb-(1/2)·sinb
=0
所以反推成立;
那么正推一定也是成立的.
证明完毕