P是三角形ABC所在平面外一点,PA PB PC两两互相垂直,三角形PAB,三角形PBC,三角形PAC的面积分别是s1 S2 S3,三角形的面积为S,求证S的平方=S1 S2 S3的平方和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 10:00:10
P是三角形ABC所在平面外一点,PA PB PC两两互相垂直,三角形PAB,三角形PBC,三角形PAC的面积分别是s1 S2 S3,三角形的面积为S,求证S的平方=S1 S2 S3的平方和
xS]K@+qҎF)XRH䋖ͣݥjZt]X.l*Lޙtc*{Μ{SnTx0^z!Vkbt(f`s(C?9Y;9Ms 3VrvD'1Yy*k};}tD3tfe[Cz;EGmnOm :U=$AIP$1+2@JV%^Ј7L@ٳ *148('u)+b +@e/Qdhr(~fsʸ2)RիF]S9㋱Cџ#[bXTV/JLoքWHί]>{'a y+<+9ílԯ:O!@5ueZvmw8ƃoe=hxӻ?

P是三角形ABC所在平面外一点,PA PB PC两两互相垂直,三角形PAB,三角形PBC,三角形PAC的面积分别是s1 S2 S3,三角形的面积为S,求证S的平方=S1 S2 S3的平方和
P是三角形ABC所在平面外一点,PA PB PC两两互相垂直,三角形PAB,三角形PBC,三角形PAC的面积分别是s1 S2 S3,三角形的面积为S,求证S的平方=S1 S2 S3的平方和

P是三角形ABC所在平面外一点,PA PB PC两两互相垂直,三角形PAB,三角形PBC,三角形PAC的面积分别是s1 S2 S3,三角形的面积为S,求证S的平方=S1 S2 S3的平方和
设PA =a,PB= b,PC =c,
则(s1)^2 +(s2)^2 +(s3)^2 = (1/4)[(a^2)(b^2) +(b^2)(c^2) +(c^2)(a^2)] (2)
AB ^2 = a^2 + b^2,BC^2 = b^2 + c^2,CA^2 = c^2 + a^2 (勾股定理)
由余弦定理:cos角BAC = [AB^2 + AC^2 - BC^2]/[2*AB*AC ]=(a^2)/根号[(a^2 +b^2)(a^2 +c^2)]
sin角BAC ={根号[ (a^2 +b^2)(a^2 +c^2)-a^4)] }/ 根号[(a^2 +b^2)(a^2 +c^2)]
= {根号[ (a^2)(b^2) +(b^2)(c^2) +(c^2)(a^2)]} / 根号[(a^2 +b^2)(a^2 +c^2)]
三角形ABC的面积S = (1/2)AB* AC*sin角BAC
S^2 = (1/4) [(a^2 +b^2)(a^2 +c^2)]*[sin角BAC]^2
=(1/4)[ (a^2)(b^2) +(b^2)(c^2) +(c^2)(a^2)] (2)
比较(1)(2),知:S^2 =(s1)^2 +(s2)^2 +(s3)^2.
命题得到证明.

P是三角形ABC所在平面外一点O是P在平面内射影若PA= PB =PC 则O是三角形的什么心 如图P是ABC所在平面外一点,且PA垂直平面ABC,若O,Q分别是 如图P是ABC所在平面外一如图P是ABC所在平面外一点,且PA垂直平面ABC,若O,Q分别是三角形ABC和三角形PBC的垂心,是证明OQ垂直平面PBC P是三角形ABC所在平面外一点,角ABC是直角,PA=PB=PC,求证:平面PAC垂直于平面ABC 已知P是三角形ABC所在平面外一点,PA,PB,PC,两两垂直,H是三角形ABC的垂心.求证:PH垂直于平面ABC. O是三角形ABC的外心,P是三角形ABC所在平面外一点且PA=PB=PC.求证PO垂直于平面ABC 几何问题:P是三角形ABC所在平面外的一点,平面α//平面ABC,α交线段PA,PB,PC于A',B',C',若PA'//A'A=2:3,详解,谢谢.几何问题:P是三角形ABC所在平面外的一点,平面α//平面ABC,α交线段PA,PB,PC于A',B',C',若PA'//A' 已知P是三角形ABC所在平面外一点 PA,PB,PC两两垂直,H是三角形ABC的垂心,求证PH垂直于平面ABC1 若P为三角形ABC所在平面外一点,且PA=PB=PC,求证点P在三角形ABC所在平面内的射影是三角形ABC的外心. p是三角形ABC所在平面的一点,若PA*PB=PB*PC=PC*PA,则P是三角形ABC的()心. 已知P是三角形ABC所在平面外一点.PA,PB,PC两两垂直,H是三角形ABC的垂心.求证;PH垂直面ABC 已知p是三角形abc所在平面外一点,pa垂直平面abc,二面角a..pb..c是直二面角.求证:ab垂直bc. 已知P是三角形ABC所在面外一点,PA=PB=PC,角BAC=90°,求证:平面PBC垂直平面ABC 已知三角形ABC中,角ABC=90,P为三角形ABC所在平面外一点,PA=PB=PC,求证平面PAC垂直平面ABC. 已知三角形ABC中,角ABC=90度,P为三角形ABC所在平面外一点,PA=PB=PC.求证:平面PAC垂直平面ABC. P为三角形ABC所在平面外一点,PA⊥ PB,PB ⊥PC,PC ⊥PA,PH ⊥平面ABC于H.求证:1 H是三角形ABC的垂心 2 三角形ABC为锐角三角形 已知P是三角形ABC所在平面外一点,PA垂直与PC,PB垂直与PC,PA垂直与PB求证,P在面ABC上的射影H是三角形ABC的垂心 过三角形ABC所在平面外一点P,作PO垂直平面,连接PA,PB,PC,PA垂直PB,PB垂直PC,PC垂直PA,则O是三角形ABC什么是什么心呢? 点P是三角形ABC所在平面外一点,若PA、PB、PC与这个平面所成角相等,则点P在平面ABC上的射影是三角形什么心