抛物线y²=2px,于椭圆x²/a²+y²/b²=1 (a>b>0),有相同焦点F,A是两曲线的交点,且AF垂直X轴求椭圆离心率.我知道 c=p/2 y=b²/a,但是答案上说b²/a=p?b²/a=2c 这是怎么来的,

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 05:09:36
抛物线y²=2px,于椭圆x²/a²+y²/b²=1 (a>b>0),有相同焦点F,A是两曲线的交点,且AF垂直X轴求椭圆离心率.我知道 c=p/2 y=b²/a,但是答案上说b²/a=p?b²/a=2c 这是怎么来的,
xR;OP+$&F.H1] MK *H4Fb: /澘 ~bġ0,{\/1>WdDJMb7eR|X LRIDv[TKC*=Nֱ[8ΞREiһc'⭱|fZEvZ%wbHr _ IXVߣgvrSoYpJj,zR(_~{_]2¡k:(KK -jmAe," U{ojϹ K e`7$I& 1Sw_wA?h@c'o%h tG5%ͻ-9W#Qס^] Ѣʈ|u; k0O 8~?ֆW<uVGђbĖ_u_{

抛物线y²=2px,于椭圆x²/a²+y²/b²=1 (a>b>0),有相同焦点F,A是两曲线的交点,且AF垂直X轴求椭圆离心率.我知道 c=p/2 y=b²/a,但是答案上说b²/a=p?b²/a=2c 这是怎么来的,
抛物线y²=2px,于椭圆x²/a²+y²/b²=1 (a>b>0),有相同焦点F,
A是两曲线的交点,且AF垂直X轴求椭圆离心率.我知道 c=p/2 y=b²/a,但是答案上说b²/a=p?b²/a=2c 这是怎么来的,

抛物线y²=2px,于椭圆x²/a²+y²/b²=1 (a>b>0),有相同焦点F,A是两曲线的交点,且AF垂直X轴求椭圆离心率.我知道 c=p/2 y=b²/a,但是答案上说b²/a=p?b²/a=2c 这是怎么来的,
解c=p/2 y=b²/a,实际上是A(p/2,b²/a),即AF=b²/a
AF⊥x轴,过点A做抛物线y²=2px的准线x=-p/2,的垂线,垂足为设为M,抛物线y²=2px的准线x=-p/2
与x周交于点N,又有AF=AM,即四边形AMNF是正方形,
即AF=FN=b²/a=p,p是点F到准线x=-p/2的距离
又F是椭圆的右焦点,N是椭圆的左焦点,
即FN=2c(2c是椭圆的焦距)
即AF=FN=b²/a=2c