已知a,b,c分别为一个三角形的三边长,求证方程b^2c^2+(b^2+c^2-a^2)x+c^2=0无实数根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:26:26
已知a,b,c分别为一个三角形的三边长,求证方程b^2c^2+(b^2+c^2-a^2)x+c^2=0无实数根
已知a,b,c分别为一个三角形的三边长,求证方程b^2c^2+(b^2+c^2-a^2)x+c^2=0无实数根
已知a,b,c分别为一个三角形的三边长,求证方程b^2c^2+(b^2+c^2-a^2)x+c^2=0无实数根
第一个“c^2”应该是“x^2”吧
△=(b^2+c^2-a^2)²-4b²c²
=(b²+c²-a²+2bc)(b²+c²-a²-2bc)
=[(b+c)²-a²][(b-c)²-a²]
=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
∵a,b,c分别为一个三角形的三边长,
∴b+c+a>0,b+c-a>0,b-c+a>0,b-c-a<0
∴(b+c+a)(b+c-a)(b-c+a)(b-c-a)<0,
既判别式小于0,所以方程b^2c^2+(b^2+c^2-a^2)x+c^2=0无实数根.
题打错了
△=(b^2+c^2-a^2)²-(2bc)²
=(b^2+c^2-a^2+2bc)(b^2+c^2-a^2-2bc)
=【(b+c)²-a²)】【(b-c)²-a²)】
=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
两边之和大于第三边
积威负,无实数根
第一个“c^2”应该是“x^2”吧
△=(b^2+c^2-a^2)²-4b²c²
=(b²+c²-a²+2bc)(b²+c²-a²-2bc)
=[(b+c)²-a²][(b-c)²-a²]
=(b+c+a)(b+c-a)(b-c+a...
全部展开
第一个“c^2”应该是“x^2”吧
△=(b^2+c^2-a^2)²-4b²c²
=(b²+c²-a²+2bc)(b²+c²-a²-2bc)
=[(b+c)²-a²][(b-c)²-a²]
=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
∵a,b,c分别为一个三角形的三边长,
∴b+c+a>0,b+c-a>0,b-c+a>0,b-c-a<0
∴(b+c+a)(b+c-a)(b-c+a)(b-c-a)<0,
既判别式小于0,所以方程b^2x^2+(b^2+c^2-a^2)x+c^2=0无实数根。
收起