方程y=tan(x+y)所确定的函数的二阶导数能写成d^2y/dx^2的吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 17:36:05
方程y=tan(x+y)所确定的函数的二阶导数能写成d^2y/dx^2的吗
xRJ@Hb?ZQ>d)BkAD M"M6&n /̙gf]}Ĩ.qs.JK4nmvjIMN|t*ݴᮑ=f^9W-#NuX*"}OFm]_/Ε8ca%XqJ Pš"PyHP z@ZN]O~ N " SQ$r֐U%&$E _I (IKS.4 ke[c'dUi7mvqA@]hmG;e 2jwJvWTLRmH<5Vym_yڤj3buuo 5r.

方程y=tan(x+y)所确定的函数的二阶导数能写成d^2y/dx^2的吗
方程y=tan(x+y)所确定的函数的二阶导数
能写成d^2y/dx^2的吗

方程y=tan(x+y)所确定的函数的二阶导数能写成d^2y/dx^2的吗
y=tan(x+y)
y'=sec²(x+y)*(x+y)'
=sec²(x+y)*(1+y')
=sec²(x+y)+y'sec²(x+y)
y'-y'sec²(x+y)=sec²(x+y)
y'=sec²(x+y)/[1-sec²(x+y)]
=sec²(x+y)/{-[sec²(x+y)-1]}
=sec²(x+y)/[-tan²(x+y)]
=-1/cos²(x+y)*cos²(x+y)/sin²(x+y)
=-csc²(x+y)
y''=-2csc(x+y)*[-csc(x+y)cot(x+y)]*(x+y)'
=2csc²(x+y)cot(x+y)*(1+y')
=2csc²(x+y)cot(x+y)*[1-csc²(x+y)]
=2csc²(x+y)cot(x+y)*{-1[csc²(x+y)-1]}
=-2csc²(x+y)cot(x+y)*[cot²(x+y)]
=-2csc²(x+y)cot³(x+y)

求由方程x-y+ 1/2 siny=0所确定的隐函数y的二阶导数d^2y/dx^2 ..将每一个偏导数分别求出来,再代入就可以了! == 也可以对f'(x)对x求导