方程sin^2 x+4sinxcosx-2cos^2 x=a有实数根,求a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 03:58:46
方程sin^2 x+4sinxcosx-2cos^2 x=a有实数根,求a的取值范围
x){6mřyqF &@FEr~q &>tݼgS7<[SƦZO{ڰEO[la~ uP^.|m۟*~gX>MB-@#!(nTk 5757D?꘥ae`o"5c5*Ք Lͬ5MpJ?\r2ydRBHHF 1_

方程sin^2 x+4sinxcosx-2cos^2 x=a有实数根,求a的取值范围
方程sin^2 x+4sinxcosx-2cos^2 x=a有实数根,求a的取值范围

方程sin^2 x+4sinxcosx-2cos^2 x=a有实数根,求a的取值范围
其实问题等价于求:
f(x)=sin^2 x+4sinxcosx-2cos^2 x的范围.
f(x)=sin^2 x+4sinxcosx-2cos^2 x
=2sin2x -3cos2x/2-1/2
=[√(2*2 + 3/2 * 3/2)]sin(2x+Ө) -1/2
=5/2sin(2x+Ө) -1/2
-3≤f(x)≤2,所以-3≤ a ≤2.