设函数f(θ)=√3sinθ+cosθ,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π,若P的坐标为(1/2,√3/2),求f(θ)的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 05:20:22
设函数f(θ)=√3sinθ+cosθ,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π,若P的坐标为(1/2,√3/2),求f(θ)的值.
x){nϦnH8CQ,̼s;yںɎ/O: =odGӹ-h7}tB/*^r[?!ww+@BRSɎ):$7^b4 t@n7y H=z6IECv6C>Orьg-OMgXt[V[)`'X~Oǹt*"px:D6 [#<;P

设函数f(θ)=√3sinθ+cosθ,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π,若P的坐标为(1/2,√3/2),求f(θ)的值.
设函数f(θ)=√3sinθ+cosθ,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π,若P的坐标为(1/2,√3/2),求f(θ)的值.

设函数f(θ)=√3sinθ+cosθ,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π,若P的坐标为(1/2,√3/2),求f(θ)的值.
由题意得:
{cosθ=1/2
{sinθ=√3/2
于是f(θ)= √3sinθ+cosθ= √3×√3/2+1/2=2