a>0,b>0 且a不等于b 比较a^2/b+b^2/a与a+b大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 16:56:04
a>0,b>0 且a不等于b 比较a^2/b+b^2/a与a+b大小
x=0 PTe }T KbB0VPqz^KbٖCC:yPƷ}VܹeNe`+rZDVBf:p(CKp.qÆ*km-~FE5ͯ,?oYG[Gf-i`jشuRfKUf qu%, RD}ih!ӳ

a>0,b>0 且a不等于b 比较a^2/b+b^2/a与a+b大小
a>0,b>0 且a不等于b 比较a^2/b+b^2/a与a+b大小

a>0,b>0 且a不等于b 比较a^2/b+b^2/a与a+b大小
a^2/b+b^2/a-(a+b)
=(a^3+b^3-a^2b-ab^2)/ab
=[(a+b)(a^2-ab+b^2)-ab(a+b)]/ab
=(a+b)(a^2-2ab+b^2)/ab
=(a+b)(a-b)^2/ab
a>0,b>0所以a+b>0,ab>0
a不等于b ,所以(a-b)^2>0
所以(a+b)(a-b)^2/ab>0
所以a^2/b+b^2/a>a+b

(a^2/b+b^2/a)-(a+b)=[(b-a)^2*(b+a)]/(ab)>0
所以前者大