求证[tanθ·(1-sinθ)]/1+cosθ=[cotθ·(1-cosθ)]/1+sinθ

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:57:17
求证[tanθ·(1-sinθ)]/1+cosθ=[cotθ·(1-cosθ)]/1+sinθ
x){ļs;m0-4c N/JR`E6IE/@f3Ov25LSAWyP5&VcbC`5,aGpMXMVS64Icg8$ @![ 0lTw1T7~}dRBn? @ J

求证[tanθ·(1-sinθ)]/1+cosθ=[cotθ·(1-cosθ)]/1+sinθ
求证[tanθ·(1-sinθ)]/1+cosθ=[cotθ·(1-cosθ)]/1+sinθ

求证[tanθ·(1-sinθ)]/1+cosθ=[cotθ·(1-cosθ)]/1+sinθ
证明:因为:[tanθ·(1-sinθ)]/(1+cosθ) - [cotθ·(1-cosθ)]/(1+sinθ)
={[tanθ·(1-sinθ)]·(1+sinθ) - [cotθ·(1-cosθ)]·(1+cosθ)}/[(1+cosθ)(1+sinθ)]
={[tanθ·(1-sin²θ)] - [cotθ·(1-cos²θ)]}/[(1+cosθ)(1+sinθ)]
=(tanθ·cos²θ - cotθ·sin²θ)/[(1+cosθ)(1+sinθ)]
=(sinθ·cosθ - cosθ·sinθ)/[(1+cosθ)(1+sinθ)]
=0
所以:[tanθ·(1-sinθ)]/(1+cosθ) = [cotθ·(1-cosθ)]/(1+sinθ)