等腰三角形ABC,在腰AB上有一点D,连接DC,以DC为底边作等腰三角形EDC相似于三角形ABC,连接AE,求证AE平行BC.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 15:32:04
x͒J@_%FwR>>}Z3PFZBR
>JMWp"zߛ=|?VZgS6㹚Oɰ2g.9VB/"9YM(Xz+4aS9<.mH'%V٤$[rPv@~M!GQ!67 /4 jq
(
,~ŷkҿN#d萄c@45TKso2d_` #Garh)Vv
`jkL.xG[|hk
等腰三角形ABC,在腰AB上有一点D,连接DC,以DC为底边作等腰三角形EDC相似于三角形ABC,连接AE,求证AE平行BC.
等腰三角形ABC,在腰AB上有一点D,连接DC,以DC为底边作等腰三角形EDC相似于三角形ABC,连接AE,求证AE平行BC.
等腰三角形ABC,在腰AB上有一点D,连接DC,以DC为底边作等腰三角形EDC相似于三角形ABC,连接AE,求证AE平行BC.
∵△EDC∽△ABC
∴∠DCE=∠BCA
而∠ACE=∠DCE-∠ACD ∠BCD=∠BCA-∠ACD
得∠ACE=∠BCD
也∵△EDC∽△ABC
∴EC:AC=DC:BC
变换一下得 EC:DC=AC:BC 加上∠ACE=∠BCD
可得 △ACE∽△BCD
∴∠CAE=∠B
∵AB=AC
∴∠CAE=∠B=ACB
∴∠CAE+∠BAC+∠B=∠ACB+∠BAC+∠B=180°
即∠EAB+∠B=180°
∴AE∥BC