已知△ABC的外接圆半径是根号2,且满足条件2倍根号2(sinA的平方—sinC的平方)=(a—b)sinB1,求∠C2,求△ABC面积的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:19:11
已知△ABC的外接圆半径是根号2,且满足条件2倍根号2(sinA的平方—sinC的平方)=(a—b)sinB1,求∠C2,求△ABC面积的最大值
已知△ABC的外接圆半径是根号2,且满足条件2倍根号2(sinA的平方—sinC的平方)=(a—b)sinB
1,求∠C
2,求△ABC面积的最大值
已知△ABC的外接圆半径是根号2,且满足条件2倍根号2(sinA的平方—sinC的平方)=(a—b)sinB1,求∠C2,求△ABC面积的最大值
正弦定理,a/sinA=b/sonB=c/sinC=2R,R=sqrt(2).
条件 2sqrt(2)[(sinA)^2—(sinC)^2]=(a—b)sinB,
==> 2R[(a/2R)^2—(c/2R)^2]=(a—b)b/(2R),
==> a^2-c^2+b^2=ab,
余弦定理,cosC=(a^2+b^2-c^2)/(2ab)=1/2
==> ∠C=60°.
2.△ABC面积=absinC/2=(2RsinA)(2RsinB)*sqrt(3)/4
=2sqrt(3)sinAsinB= A=B=60°.
故 当A=B=60°时,△ABC面积有最大值3sqrt(3)/2.
a/sinA=b/sinB=c/sinC=2R=2√2
=>a=2RsinA,b=2RsinB,c=2RsinC
2√2(sin²A-sin²C)=(a-b)sinB
=>4R²(sin²A-sin²C)=2R(a-b)sinB
=>a²-c²=(a-b)b
=>(a²+b...
全部展开
a/sinA=b/sinB=c/sinC=2R=2√2
=>a=2RsinA,b=2RsinB,c=2RsinC
2√2(sin²A-sin²C)=(a-b)sinB
=>4R²(sin²A-sin²C)=2R(a-b)sinB
=>a²-c²=(a-b)b
=>(a²+b²-c²)/2ab=1/2=cosC
=>C=60°
S△ABC=absinC/2=2RsinA*2RsinB*sinC/2
=√3(2sinAsinB)=√3[cos(A-B)-cos(A+B)]
=√3[cos(A-B)+1/2]≤3√3/2
收起