在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC又怎样的数量关系?并证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 10:14:50
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC又怎样的数量关系?并证
xWNV jl_;)85&;!Zi>@(TP"]6DHBiCv+\;1 et4|=s~Ϻ}\x5Iq%) q;ޙ nx^?[kgwyuGiY YVd="kXW516.Lmq%`1 6[z?Wo86f|qn%U4\*9w[y.MĮ{%hm?1{'b9Z3p8o;^+GᣅӪ+ Nqa]r븎~ {O_i٤ڱmg|O9ʭ -cwR٬2;+>J)#cc/fIgFFFǑ2?Qi2CB$e/MN`-X^FIXKقږ,s,KdIL[2 2/N(֍D%"[PD7$QRۦ  @moPQ˫N7 t9|ID |4-D~CG_-iPm$6-l5jƓJ}*UU|I"; ރCB/ps/PCʼnZ2j(Ue!:I4 B^l6oSu_,@`ylRQ2A(DQY((sTQ52~C Qjݝʯ4|}Л0:~1 r.UzS٧xg[5F W8t:AR 7H2'^ ,u3piZSDRE@>d3NYWeɇ~ч\zz-?<-_xMUg~>e.'pu$xߝIDᅴJ޹D V7"E!#};Nx} 6⣿O9*s4#.BuYC%gk$Óy0#dA@:+hF9Qm@} !膐-=QְDee7~P7&%5

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC又怎样的数量关系?并证
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC又怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由
(3)在(2)的情况下,求ED的长

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC又怎样的数量关系?并证
(1)EA1=FC
因为AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°;又∠ABA1=∠CBC1=α
,所以△ABE全等于△C1BF,所以BE=BF,所以EA1=FC.
(2)菱形
∠A=∠C1=30°,∠ABC1=∠ABC=120°+α=150°,所以∠ABC1+∠C1=180°,所以AB平行于DC1,同理BC1平行于AD,所以BC1DA为平行四边形.又因为AB=BC=BC1,所以BC1DA为平行四边形为菱形.
(3)由(2)易证△ABE相似于△A1ED.A1D/AB=DE/AE.
△ABC中,AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°,过B作AC的垂线,根据直角三角形中30°所对的直角边等于斜边的一半和勾股定理易得AC=A1C1=2倍根号3.A1D=2倍根号3-2,AE=2-DE,AB=2,代入等式A1D/AB=DE/AE,可算出DE=(6-2倍根号3)/3

(1)EA1=FC
因为AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°;又∠ABA1=∠CBC1=α
,所以△ABE全等于△C1BF,所以BE=BF,所以EA1=FC。
(2)菱形
∠A=∠C1=30°,∠ABC1=∠ABC=120°+α=150°,所以∠ABC1+∠C1=180°,所以AB平行于DC1,同理BC1平行于AD,所以BC1DA为...

全部展开

(1)EA1=FC
因为AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°;又∠ABA1=∠CBC1=α
,所以△ABE全等于△C1BF,所以BE=BF,所以EA1=FC。
(2)菱形
∠A=∠C1=30°,∠ABC1=∠ABC=120°+α=150°,所以∠ABC1+∠C1=180°,所以AB平行于DC1,同理BC1平行于AD,所以BC1DA为平行四边形。又因为AB=BC=BC1,所以BC1DA为平行四边形为菱形。
(3)由(2)易证△ABE相似于△A1ED。A1D/AB=DE/AE。
△ABC中,AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°,过B作AC的垂线,根据直角三角形中30°所对的直角边等于斜边的一半和勾股定理易得AC=A1C1=2倍根号3。A1D=2倍根号3-2,AE=2-DE,,AB=2,代入等式A1D/AB=DE/AE,可算出DE=(6-2倍根号3)/3

收起

(1)EA1=FC
因为AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°;又∠ABA1=∠CBC1=α
,所以△ABE全等于△C1BF,所以BE=BF,所以EA1=FC。
(2)菱形
∠A=∠C1=30°,∠ABC1=∠ABC=120°+α=150°,所以∠ABC1+∠C1=180°,所以AB平行于DC1,同理BC1平行于AD,所以BC1DA为...

全部展开

(1)EA1=FC
因为AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°;又∠ABA1=∠CBC1=α
,所以△ABE全等于△C1BF,所以BE=BF,所以EA1=FC。
(2)菱形
∠A=∠C1=30°,∠ABC1=∠ABC=120°+α=150°,所以∠ABC1+∠C1=180°,所以AB平行于DC1,同理BC1平行于AD,所以BC1DA为平行四边形。又因为AB=BC=BC1,所以BC1DA为平行四边形为菱形。
(3)由(2)易证△ABE相似于△A1ED。A1D/AB=DE/AE。
△ABC中,AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°,过B作AC的垂线,根据直角三角形中30°所对的直角边等于斜边的一半和勾股定理易得AC=A1C1=2倍根号3。A1D=2倍根号3-2,AE=2-DE,,AB=2,代入等式A1D/AB=DE/AE,可算出DE=(6-2倍根号3)/3

收起

(1)EA1=FC
因为AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°;又∠ABA1=∠CBC1=α
,所以△ABE全等于△C1BF,所以BE=BF,所以EA1=FC。
(2)菱形
∠A=∠C1=30°,∠ABC1=∠ABC=120°+α=150°,所以∠ABC1+∠C1=180°,所以AB平行于DC1,同理BC1平行于AD,所以BC1DA为...

全部展开

(1)EA1=FC
因为AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°;又∠ABA1=∠CBC1=α
,所以△ABE全等于△C1BF,所以BE=BF,所以EA1=FC。
(2)菱形
∠A=∠C1=30°,∠ABC1=∠ABC=120°+α=150°,所以∠ABC1+∠C1=180°,所以AB平行于DC1,同理BC1平行于AD,所以BC1DA为平行四边形。又因为AB=BC=BC1,所以BC1DA为平行四边形为菱形。
(3)由(2)易证△ABE相似于△A1ED。A1D/AB=DE/AE。
△ABC中,AB=BC,∠ABC=120°,所以∠A=∠C=∠A1=∠C1=30°,过B作AC的垂线,根据直角三角形中30°所对的直角边等于斜边的一半和勾股定理易得AC=A1C1=2倍根号3。A1D=2倍根号3-2,AE=2-DE,,AB=2,代入等式A1D/AB=DE/AE,可算出DE=(6-2倍根号3)/3

收起