在三角形ABC中,已知a2+b2=c2+ab,sinA+sinB=3/4,试判断三角形的形状
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:01:18
x){:gœ/Ozwkun|D#$#d#$dkeDk%5uc`q
N/v`HFقORmo oj95iBQV~qAb(
在三角形ABC中,已知a2+b2=c2+ab,sinA+sinB=3/4,试判断三角形的形状
在三角形ABC中,已知a2+b2=c2+ab,sinA+sinB=3/4,试判断三角形的形状
在三角形ABC中,已知a2+b2=c2+ab,sinA+sinB=3/4,试判断三角形的形状
由题意得:
a^2+b^2=c^2+ab,得C=π/3
∴A+B=2π/3.
sinAsinB=sinAsin[(2π/3)-A]
=sinA(sin2π/3cosA-cos2π/3sinA)
=根号3/4sin2A+1/4-1/4cos2A=3/4
∴sin(2A-π/6)=1.
又∵-π/6