如图,已知△ABC内接于圆O,点D在OC的延长线上,sinB=1/2,∠D=30度求证:(1)AD是圆O切线(2)若AC=6,求AD的长第一小问不用arcsin来解,就是用初中函数来解如图~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 02:10:12
如图,已知△ABC内接于圆O,点D在OC的延长线上,sinB=1/2,∠D=30度求证:(1)AD是圆O切线(2)若AC=6,求AD的长第一小问不用arcsin来解,就是用初中函数来解如图~
xUNPĪVk-*?Eh%Hʫ(P^ ?r:qxD7KϜ{3sT7^Q~ޖ#ع| F5>TVBACa|w:}R?8Ʃt/"4GUˊ3`jlU*Y2&+&ap D2D вr}VәD}poPDZi?\S۰Oo- 9rw/SSp|RgK)|wvM3ɤtOL23g&{7'.^CAӉ>)Y1ִtfHƸs|bbY+$0z 1@8FXB1͐=K譴Eli Q? &5 róQ^aD[jTwpd'VzhYt$ k$B“Y1瘐5Z ZBir.{lvZXk7W'5vҐG U@+۽-P@\Ɠ<_3dEz^s@GN֤=\>|k%Q8 5{4=D18.=HZf_yN_42t{H biN98>pDTIV=#qi>8;P{u)]0)+i\x?Dqa$CF*L yA{hg'.=ݿ,sr^q (afqML!]­k=Rܿc Y

如图,已知△ABC内接于圆O,点D在OC的延长线上,sinB=1/2,∠D=30度求证:(1)AD是圆O切线(2)若AC=6,求AD的长第一小问不用arcsin来解,就是用初中函数来解如图~
如图,已知△ABC内接于圆O,点D在OC的延长线上,sinB=1/2,∠D=30度
求证:(1)AD是圆O切线
(2)若AC=6,求AD的长
第一小问不用arcsin来解,就是用初中函数来解
如图~

如图,已知△ABC内接于圆O,点D在OC的延长线上,sinB=1/2,∠D=30度求证:(1)AD是圆O切线(2)若AC=6,求AD的长第一小问不用arcsin来解,就是用初中函数来解如图~
(1)连接OA
∵sinB=1/2,∴∠B=30°
∴∠AOD=60°,又∵∠D=30度
∴∠AOD=90°
∴AD是圆O切线
(2)做CE⊥AD,于点D
∵∠COA=60°,所以△AOC为正三角形,∴∠CAO=60 °,AC=OC
∴∠CAE=30°,AC=CE,又∵CE⊥AD
∴AE=(根号3)/2×AC=3倍根号3,AD=2CE
∴AD=2CE=6倍根号3

证明:连接OA,
(1)∵sinB=12,
∴∠B=30°,
∠AOC=60°,
又∵OA=OC,
∴△AOC是等边三角形,
∴∠OAC=60°,
∴∠OAD=60°+30°=90°,
∴AD是⊙O的切线;
(2)∵OC⊥AB,OC是半径,
∴BE=AE,
∴OD是AB的垂直平分线,
∴∠DAE=60°...

全部展开

证明:连接OA,
(1)∵sinB=12,
∴∠B=30°,
∠AOC=60°,
又∵OA=OC,
∴△AOC是等边三角形,
∴∠OAC=60°,
∴∠OAD=60°+30°=90°,
∴AD是⊙O的切线;
(2)∵OC⊥AB,OC是半径,
∴BE=AE,
∴OD是AB的垂直平分线,
∴∠DAE=60°,∠D=30°,
在Rt△ACE中,AE=cos30°×AC=523,
∴在Rt△ADE中,AD=2AE=53.

收起

(1)连接OA
∵sinB=1/2,∴∠B=30°
∴∠AOD=60°,又∵∠D=30度
∴∠AOD=90°
∴AD是圆O切线
(2)做CE⊥AD,于点D
∵∠COA=60°,所以△AOC为正三角形,∴∠CAO=60 °,AC=OC
∴∠CAE=30°,AC=CE,又∵CE⊥AD
∴AE=(根号3)/2×AC=3倍根号3,AD=2CE...

全部展开

(1)连接OA
∵sinB=1/2,∴∠B=30°
∴∠AOD=60°,又∵∠D=30度
∴∠AOD=90°
∴AD是圆O切线
(2)做CE⊥AD,于点D
∵∠COA=60°,所以△AOC为正三角形,∴∠CAO=60 °,AC=OC
∴∠CAE=30°,AC=CE,又∵CE⊥AD
∴AE=(根号3)/2×AC=3倍根号3,AD=2CE
∴AD=2CE=6倍根号3

收起