(cos40°+sin50°(1+√3tan10°))/sin70°√(1+cos40°)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:33:11
(cos40°+sin50°(1+√3tan10°))/sin70°√(1+cos40°)
x @[BFV YXV`b^-vbuֿ1z;yNͪ\u;z^UqxjդQiM8B4l_T_άuk9 )t$s&HDf4 k/pO!* d0} 5o &oHA1໥I :ozFGS3,gV>eđhJXX#B/0^npG }Voa#9 zZ

(cos40°+sin50°(1+√3tan10°))/sin70°√(1+cos40°)
(cos40°+sin50°(1+√3tan10°))/sin70°√(1+cos40°)

(cos40°+sin50°(1+√3tan10°))/sin70°√(1+cos40°)
[cos40°+sin50°(1+√3tan10°)]/[sin70°√(1+cos40°)]
=[cos40°+sin50°×(tan60°-tan10°)/tan50°]/sin70°(√2)cos20°
=[cos40°+(tan60°-tan10°)cos50°]/sin70°(√2)cos20°
=[cos40°+√3cos50°-tan10°cos50°]/ (√2)cos20°^2
=[cos40°+√3sin40°-tan10°sin40°] /√2/2(1+cos40°)
=2[(1/2)cos40+(√3/2)sin40°]-(sin10°/cos10°)sin40° /√2/2(1+cos40°)
=2(cos60°cos40°+sin60°sin40°)-[(sin10°)∧2/cos10°sin10°]sin40°/√2/2(1+cos40°)
=2cos20°-[(1-cos20°)/sin20°]2sin20°cos20°/√2/2(1+cos40°)
=2cos20°-2cos20°+2(cos20°) ^2/√2/2(1+cos40°)
=1+cos40°/√2/2(1+cos40°)
=√2