1/(1+√2)+1/(√2+√3)+1/(√3+2)+.+1/(3+√10)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:36:15
1/(1+√2)+1/(√2+√3)+1/(√3+2)+.+1/(3+√10)=
xQKN0JD&N ٹK{"Dm(+P[-, qPWBg짘 dr$G"QI,ާ,R(S).a4P/2o>Ճl~!_H R-;Oezz_]~|Z8[5G~kg_B@I4Ō0א./xm

1/(1+√2)+1/(√2+√3)+1/(√3+2)+.+1/(3+√10)=
1/(1+√2)+1/(√2+√3)+1/(√3+2)+.+1/(3+√10)=

1/(1+√2)+1/(√2+√3)+1/(√3+2)+.+1/(3+√10)=
分母有理化,=(√2-1)+(√3-√2)+(√4-√3)+...+(√10-√9)=√10-1.

因为1/1+√2=√2-1,1/(√2+√3)=√3-√2。所以原式=√2-1+√3-√2+…+√10-3=√10-1

将每一项都分母有理化得
1/(1+√2)=√2-1
1/(√2+√3)=√3-√2
.......
1/(3+√10)= √10-3
则原式=√2-1+√3-√2+.....+√10-3=√10-1