1/1*2+1/1*3+1*3*4+……+1/2000*1/20011/1*2+1/1*3+1/3*4+……+1/2000*1/2001

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 05:04:23
1/1*2+1/1*3+1*3*4+……+1/2000*1/20011/1*2+1/1*3+1/3*4+……+1/2000*1/2001
x)372@ea !*}\l4S)nS lhP#Jm5 u\Mm dY@&LD.D&D.) yٜ5/xڱ/7\i뚧{ 4 5m ~0F 16`@zW

1/1*2+1/1*3+1*3*4+……+1/2000*1/20011/1*2+1/1*3+1/3*4+……+1/2000*1/2001
1/1*2+1/1*3+1*3*4+……+1/2000*1/2001
1/1*2+1/1*3+1/3*4+……+1/2000*1/2001

1/1*2+1/1*3+1*3*4+……+1/2000*1/20011/1*2+1/1*3+1/3*4+……+1/2000*1/2001
1/1*2+1/2*3+1/3*4+……+1/2000*1/2001
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2000-1/2001)
=1-1/2001
=2000/2001
本题利用裂项公式:1/n(n+1)=1/n-1/(n+1)

1/1*2+1/2*3+1/3*4+……+1/2000*1/2001
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2000-1/2001)
=1-1/2001
=2000/2001