导数求原函数f'(lnx) = x ,则f(x)=∫f′(x²)dx = x^4 + C 则f(x)=我想要看看解题过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 13:22:17
导数求原函数f'(lnx) = x ,则f(x)=∫f′(x²)dx = x^4 + C 则f(x)=我想要看看解题过程
xRJ@&H;3ĀR)aD-Vl5jARm_Jf&4%+!;ܹ$s)vY=ѝs݃:;-,aDP:GY4FFWr攞!Q Q8Ĝ=Wi qqyoRrnK$ȟXoF._(-^-xK-5 $F*J[2[$3V,Sʑ0B8";֠ƶmKK0GdIEڤ1́c97j^l6q"(']k3<\!52;xn/v8`-&UcD,7U:lY{E~-ޅUJPV,߻ ."2]Z]Gf+X7Ѿ2;]eguz ^

导数求原函数f'(lnx) = x ,则f(x)=∫f′(x²)dx = x^4 + C 则f(x)=我想要看看解题过程
导数求原函数
f'(lnx) = x ,则f(x)=
∫f′(x²)dx = x^4 + C 则f(x)=
我想要看看解题过程

导数求原函数f'(lnx) = x ,则f(x)=∫f′(x²)dx = x^4 + C 则f(x)=我想要看看解题过程
f'(lnx) = x f'(t) = e^t 两边积分
f(t)=e^t+C
即f(x)=e^x+C
∫[f′(x^2)]dx = x^4 + C
x^4=∫4x^3dx
4x^3=f′(x^2)
令x^2=t
4t^(3/2)=f'(t)
两边积分f(t)=(8/5)t^(5/2)+C

第一题
令t=lnx,x=e^t
则f'(t)=e^t,所以f(x)=e^x+C
第二题
两边同时对x求导
f'(x^2)2x=4x^3
f'(x^2)=2x^2
f"(x)=2x
所以f(x)=x^2+C
楼上的,第二题你不能简单的把两个被积函数相等
因为f'(x^2)是复合函数,要按照复合函数求导方法来做