函数f(x)=ax+lnx+1/2x^2,a为常数,(1)当a=-4时,求函数的单调区间(2)已知函数f(x)的极大值与极小值之和为-9,求a的值(3)是否存在实数a使得f(x)在定义域内为单调函数,如果存在,求出a的范围,否则,说

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:22:06
函数f(x)=ax+lnx+1/2x^2,a为常数,(1)当a=-4时,求函数的单调区间(2)已知函数f(x)的极大值与极小值之和为-9,求a的值(3)是否存在实数a使得f(x)在定义域内为单调函数,如果存在,求出a的范围,否则,说
xV[S"G+SVm en\dwᲒ*YLe*O EqzZ[`t]@bM O4q7,sO9F=ތ;tgӺg}RpFZ-Xt;x'꭪LJ7/t̢Rgy~-7"sx ^x;PksL/J xBR%h.+ +hljj ڶ.Ӎ-KvUʢڹ^ƹ`ʒ7NƋ'ml?e6G"pdV.R.5򬃘Vf .@k +*m^JTDKV:2U7Z/*2FJ 6O # +Rw1zv=D"[>5ZiD #ڕYG冕᭢9{ق5I!;Z>%ˉO35R&?LEDM~òw*Iy55y63SODN86x:JPD_ҴhkAUXMȋETG B Ѩ|zLأK`%p_CQIHb$UbSIu:<<. Cnu%]=An)-hI[6٫ԓNWKWHx| aVǎaN6mnI BUdpaa8Y1͗@& xv0-!8oR)Px=F먛"cR-m'ifȞNku`ޑyXu`nh Nt};G򩶻K'WaG 1YXSeMl*u5W;YiRȨNBAp̹q1m\7~8hbWG\&~^c&

函数f(x)=ax+lnx+1/2x^2,a为常数,(1)当a=-4时,求函数的单调区间(2)已知函数f(x)的极大值与极小值之和为-9,求a的值(3)是否存在实数a使得f(x)在定义域内为单调函数,如果存在,求出a的范围,否则,说
函数f(x)=ax+lnx+1/2x^2,a为常数,(1)当a=-4时,求函数的单调区间(2)已知函数f(x)的极大值与极小值之和为-9,求a的值(3)是否存在实数a使得f(x)在定义域内为单调函数,如果存在,求出a的范围,否则,说明理由 根据回答的情况,

函数f(x)=ax+lnx+1/2x^2,a为常数,(1)当a=-4时,求函数的单调区间(2)已知函数f(x)的极大值与极小值之和为-9,求a的值(3)是否存在实数a使得f(x)在定义域内为单调函数,如果存在,求出a的范围,否则,说
其实不知道你的1/2x^2是指 1/(2x^2)还是(1/2)* x^2 根据经验按后者做了下 发现第二小问的答案还挺漂亮的. 如果是前者吱一声啊. 图片可能有点模糊,将就一下吧.

我来试试:
(1)a=-4
f(x)=-4x+lnx+1/2x^2
对f求导:
f ‘ (x)=-4+1/x+x=x+1/x -4 x>0
当f ‘ (x)>0时为单调递增函数,x>2+√3 或者 0当f ‘ (x)<0时为单调递减函数,2+√3>x>2-√3
(2)f ‘ (x)=a+1/x+x=x+1/x +a=...

全部展开

我来试试:
(1)a=-4
f(x)=-4x+lnx+1/2x^2
对f求导:
f ‘ (x)=-4+1/x+x=x+1/x -4 x>0
当f ‘ (x)>0时为单调递增函数,x>2+√3 或者 0当f ‘ (x)<0时为单调递减函数,2+√3>x>2-√3
(2)f ‘ (x)=a+1/x+x=x+1/x +a=0
化简得x^2+ax+1=0
假设这两个根是x1和x2
那么f(x1)+f(x2)=-9
代入f化简得:
a(x1+x2)+lnx1x2+1/2((x1+x2)^2-2x1x2)=-9
△>=0 a<-2
x1+x2=-a>0
x1x2=1
代入化简:a^2=16 又因为a<0,所以a=-4
(3)假设存在a:
当f ‘ (x)>0时为单调递增函数,f ‘ (x)=a+1/x+x=x+1/x +a >=0
所以必须保证想x大于0时,x+1/x +a恒大于等于0
因此x+1/x +a>=0
a>=-(x+1/x)
x>0
根据不等式定理:
a>=-2 时使得f(x)在定义域内为单调增函数;
当f ‘ (x)<=0时为单调递减函数,
必须保证在x大于0时,x+1/x +a恒小于等于0
解出a<=-2
但是此时,f ‘ (x)=a+1/x+x=x+1/x +a=0
将有两个极值,不是单调函数;
综上所述a>=-2时, f(x)在定义域内为单调函数;

收起