1.设函数 f(9)=1-e的x次方 的图像与 x 轴相交于点P,求曲线在点P处的切线方程.2.某海湾拥有世界上最大的海潮,其高低水位之差可达到15m.假设在该海湾某一固定点,大海水深 d (单位米)与午夜后的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:55:13
1.设函数 f(9)=1-e的x次方 的图像与 x 轴相交于点P,求曲线在点P处的切线方程.2.某海湾拥有世界上最大的海潮,其高低水位之差可达到15m.假设在该海湾某一固定点,大海水深 d (单位米)与午夜后的
xRRP , ĮZ)ꝡ97J9xمSSj`,B%l(Z99͑2L`nW7cxLH@yɃQbm66/Q=8ٖ*/Dr2ݽr:`\,3QEiEVd'$F ΈA'w,xb ~)~aqB$Ã['~Q̆PM.+;p\M8zl:dNK; h,GvM##Ep֢#kB¹+g]sn/Csel,$:і@j)zЛCRQ9'Zd9W?8Iбc N*9\ѩs

1.设函数 f(9)=1-e的x次方 的图像与 x 轴相交于点P,求曲线在点P处的切线方程.2.某海湾拥有世界上最大的海潮,其高低水位之差可达到15m.假设在该海湾某一固定点,大海水深 d (单位米)与午夜后的
1.设函数 f(9)=1-e的x次方 的图像与 x 轴相交于点P,求曲线在点P处的切线方程.
2.某海湾拥有世界上最大的海潮,其高低水位之差可达到15m.假设在该海湾某一固定点,大海水深 d (单位米)与午夜后的时间 t (单位h) 的关系由函数 d(t)=10+4cost 表示.求下列时刻潮水的速度.(精确到0.01):
(1)上午6:00
(2)上午9:00
(3)中午12:00
(4)下午6:00

1.设函数 f(9)=1-e的x次方 的图像与 x 轴相交于点P,求曲线在点P处的切线方程.2.某海湾拥有世界上最大的海潮,其高低水位之差可达到15m.假设在该海湾某一固定点,大海水深 d (单位米)与午夜后的
(1)令y=0可得x=0.所以p的坐标为(0,0)
又f‘=-e^x,所以f‘(0)=-1,从而过P的切线坐标为y-0=-1(x-0),即y=-x
(2)由题得v(t)=d’(t)=-4cost
从而上午v(6)=-4cos6=-4*0.960170287=-3.84
v(9)=-4cos9=3.64
v(12)=-4cos12=-3.38
v(18)=-4cos18=-2.61

打到电脑上真的好麻烦。。
我记得这些题貌似和课本上的例题差不多 回去翻课本吧 实在没有资料书练习册上也很多 找到类似的看着答案 自己慢慢理解吧 会比较有效果