(1)lim(x趋向0)[(1+x)^0.5+(1-x)^0.5-2]/x^2 (2)lim(n趋向无穷)sin[[(n^2+1)^0.5]π](1)lim(x趋向0)[(1+x)^0.5+(1-x)^0.5-2]/x^2 (2)lim(n趋向无穷)sin[[(n^2+1)^0.5]π]
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 15:11:04
(1)lim(x趋向0)[(1+x)^0.5+(1-x)^0.5-2]/x^2 (2)lim(n趋向无穷)sin[[(n^2+1)^0.5]π](1)lim(x趋向0)[(1+x)^0.5+(1-x)^0.5-2]/x^2 (2)lim(n趋向无穷)sin[[(n^2+1)^0.5]π]
(1)lim(x趋向0)[(1+x)^0.5+(1-x)^0.5-2]/x^2 (2)lim(n趋向无穷)sin[[(n^2+1)^0.5]π]
(1)lim(x趋向0)[(1+x)^0.5+(1-x)^0.5-2]/x^2
(2)lim(n趋向无穷)sin[[(n^2+1)^0.5]π]
(1)lim(x趋向0)[(1+x)^0.5+(1-x)^0.5-2]/x^2 (2)lim(n趋向无穷)sin[[(n^2+1)^0.5]π](1)lim(x趋向0)[(1+x)^0.5+(1-x)^0.5-2]/x^2 (2)lim(n趋向无穷)sin[[(n^2+1)^0.5]π]
我只知道问题一 将x=0代入 为0/0型 用罗比达法则 lim(x趋向0){1/2[(1+x)^-0.5-(1-x)^-0.5]/2x}
= lim(x趋向0){[-1/4(1+x)^-1.5+1/4(1-x)^-1.5]/2}
将x=0代入得 =0
问题二 n趋向无穷==>[(n^2+1)^0.5]π=nπ
即lim(n趋向无穷)sin[[(n^2+1)^0.5]π]=lim(n趋向无穷)sin nπ 因为函数y=sinx为周期函数 所以 sin nπ n—>无穷 极限不存在