已知函数f(x)=-1/3x^3+bx^2-3a^2x(a≠0)在x=a处取得极值,设函数g(x)=2x^3-3af`(x)-6a^3,如果g(x)在开区间(0,1)上存在极小值,求实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:26:39
已知函数f(x)=-1/3x^3+bx^2-3a^2x(a≠0)在x=a处取得极值,设函数g(x)=2x^3-3af`(x)-6a^3,如果g(x)在开区间(0,1)上存在极小值,求实数a的取值范围
xTMo@+*[Mbu} *j/{$ZJA4i>JI!% ._MH*7{of\ y=NF²j ;ƒ]5c JI4BxTwɰN[$)P\^cu 2ࠦc(4G[M˒ޓ&oސTh7G[&9Oy3U<ĺmJ VOkOWӠ}A3eA(ue/@he߾ݴV@B 1,vX;HCm8m|6{ m}N^s_^/d~{q

已知函数f(x)=-1/3x^3+bx^2-3a^2x(a≠0)在x=a处取得极值,设函数g(x)=2x^3-3af`(x)-6a^3,如果g(x)在开区间(0,1)上存在极小值,求实数a的取值范围
已知函数f(x)=-1/3x^3+bx^2-3a^2x(a≠0)在x=a处取得极值,设函数g(x)=2x^3-3af`(x)-6a^3,
如果g(x)在开区间(0,1)上存在极小值,求实数a的取值范围

已知函数f(x)=-1/3x^3+bx^2-3a^2x(a≠0)在x=a处取得极值,设函数g(x)=2x^3-3af`(x)-6a^3,如果g(x)在开区间(0,1)上存在极小值,求实数a的取值范围
已知函数f(x)=-(1/3)x³+bx²-3a²x(a≠0)在x=a处取得极值,设函数g(x)=2x³-3af`(x)-6a³,
如果g(x)在开区间(0,1)上存在极小值,求实数a的取值范围
f′(x)=-x²+2bx-3a²,由于f(x)在x=a处取得极值,故有f′(a)=-a²+2ab-3a²=2ab-4a²=2a(b-2a)=0
于是得a=0或b=2a.
当a=0时,f′(x)=-x²+2bx,这时g(x)=2x³在(0,1)上不存在极小值,故a≠0;
当b=2a时,f′(x)=-x²+4ax-3a²,此时g(x)=2x³-3a(-x²+4ax-3a²)-6a³=2x³+3ax²-12a²x;
令g′(x)=6x²+6ax-12a²=6(x²+ax-2a²)=6(x+2a)(x-a)=0,得驻点x₁=-2a,x₂=a;
当aa,a

∵f(x)=-1/3x^3+bx^2-3a^2x
∴f'(x)=-x^2+2bx-3a^2
有f'(a)=-a^2+2ab-3a^2=0
解得b=2a,代入有
f'(x)=-x^2+a^2
代入g(x)得
g(x)=2x^3+3ax^2-9a^3
∴g'(x)=6x^2+6ax
令g'(x)=0得,x=-a或x=0
①a>0<...

全部展开

∵f(x)=-1/3x^3+bx^2-3a^2x
∴f'(x)=-x^2+2bx-3a^2
有f'(a)=-a^2+2ab-3a^2=0
解得b=2a,代入有
f'(x)=-x^2+a^2
代入g(x)得
g(x)=2x^3+3ax^2-9a^3
∴g'(x)=6x^2+6ax
令g'(x)=0得,x=-a或x=0
①a>0
有令g'(x)>0得x>0或x<-a
画图易知在(0,1)是单调函数,不满足要求
②a<0
同理解得g'(x)>0有x>-a或x<0
画图易知当-a>1时满足题意
则-1

收起