已知函数f(x)=x^3-3x^2+1,当x∈[0,2]时,若不等式af '(x)+9a>x恒成立,求实数a的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 03:10:28
已知函数f(x)=x^3-3x^2+1,当x∈[0,2]时,若不等式af '(x)+9a>x恒成立,求实数a的取值范围.
xŐAN@NHthF\@2.4D7,*q*(FE HbD4FIeFG]۷;{_W-d˞jR-zfs ܛQ3&ftdHUjeV6Xp7*GLD$cL*G K-zn`[o]9>xZǬD=SX-eiݐ9理QZU^jf |9e

已知函数f(x)=x^3-3x^2+1,当x∈[0,2]时,若不等式af '(x)+9a>x恒成立,求实数a的取值范围.
已知函数f(x)=x^3-3x^2+1,当x∈[0,2]时,若不等式af '(x)+9a>x恒成立,求实数a的取值范围.

已知函数f(x)=x^3-3x^2+1,当x∈[0,2]时,若不等式af '(x)+9a>x恒成立,求实数a的取值范围.
f(x)=x^3-3x^2+1
求导得到f‘(x)=3x^2-6x
故a(3x^2-6x)+9a>x
得到a(3x^2-6x+9)>x
而3x^2-6x+9>0恒成立
故a>x/3x^2-6x+9
当x=0时,a>0
当0=6√3-6 当且仅当x=√3时,成立
所以a

在(-∞,0]上有极大值f(0)=1
在[2,+∞)上有极小值f(2)=8-12+1=-3