如图:在直角三角形ABC中,角BAC=90,AB=AC,P为BC延长线上任一点,过B、C两点分别作直线AP的垂线BE、CF、E、F分别为垂足,求证:BE+CF=EF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:46:32
如图:在直角三角形ABC中,角BAC=90,AB=AC,P为BC延长线上任一点,过B、C两点分别作直线AP的垂线BE、CF、E、F分别为垂足,求证:BE+CF=EF
xT_OP* O̵]YiJro}&T`2O:  c@,?ӾݘcKRmy"|g5#SR(p"-:\ѓ{VVh-W"~:V 8 T~\+& Ç]Xs>>6ڻ&c=istzlH#drw9Ύe\>fӘ57=dS,3*ޓx~4<ӳ !aKSx\KFZmAT-qDܰ%𢜘 cb7EAPDA4 [VtaRox"usQ ANOي% Iӂl&S0,Ѻa.@V5M&o\apΧn~W184\svIcu{Jo}RE.6dwP(PNA~^ Q?sLa^C$aKpFjk{JMGOz'۞ܩ/ U>u4?郚ej@,}*&3 F`5`W,XTC__J_]@[# vbaEoz?7T 5n 0DWXj7tԩ3@_o[lSj Ҭ/VVZ47G?Y`u5niH ˿,v,`_yPȐ/o

如图:在直角三角形ABC中,角BAC=90,AB=AC,P为BC延长线上任一点,过B、C两点分别作直线AP的垂线BE、CF、E、F分别为垂足,求证:BE+CF=EF

如图:在直角三角形ABC中,角BAC=90,AB=AC,P为BC延长线上任一点,过B、C两点分别作直线AP的垂线BE、CF、E、F分别为垂足,求证:BE+CF=EF

如图:在直角三角形ABC中,角BAC=90,AB=AC,P为BC延长线上任一点,过B、C两点分别作直线AP的垂线BE、CF、E、F分别为垂足,求证:BE+CF=EF
证明:
∵∠BAC=90
∴∠BAE+∠CAF=180-∠BAC=90
∵BE⊥PF、CF⊥PF
∴∠AEB=∠AFC=90
∴∠BAE+∠ABE=90
∴∠ABE=∠CAF
∵AB=AC
∴△ABE≌△CAF (AAS)
∴AE=CF,AF=BE
∵EF=AE+AF
∴EF=BE+CF

三角形AEB全等与三角形CFA 就可以了!

∵BE垂直于AP
CF垂直于AP
∴∠AEB=∠AFC=90°
∵∠AEB=90°
∴∠EAB+∠EBA=90°
∵∠BAC=90°
∴∠EAB+∠ACF=90°
∴∠EBA=∠ACF
在△AEB与△CFA中:
∠AEB=∠AFC
∠EBA=∠ACF
AB=AC
∴△AEB全等于△CFA
∴BE...

全部展开

∵BE垂直于AP
CF垂直于AP
∴∠AEB=∠AFC=90°
∵∠AEB=90°
∴∠EAB+∠EBA=90°
∵∠BAC=90°
∴∠EAB+∠ACF=90°
∴∠EBA=∠ACF
在△AEB与△CFA中:
∠AEB=∠AFC
∠EBA=∠ACF
AB=AC
∴△AEB全等于△CFA
∴BE=AF
AE=CF
所以EF=AE+AF=CF+BE
用全等就可以做,很简单
我初三刚毕业,望采纳

收起

角EAB=角ACF
角BEA=角AFC
AB=AC
三角形AEB全等于三角形CFA
所以AF=EB AE=CF
所以EF=BE+CF