已知函数f(x)=x2+|x-a|+1,(x∈R) 1)画出a=0时函数f(x)的图像 2)求函数f(x)的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:27:43
已知函数f(x)=x2+|x-a|+1,(x∈R) 1)画出a=0时函数f(x)的图像 2)求函数f(x)的最小值
xW]OP+dG-~\NK l*(5DEA,Dqmc8]vjKiuB˲]yy[© s %#Y|`Cx]y>?vv@wֶV~.E .Ra[RۋEZ.Ú.{U/ǒشҩqB23.MG}.5 JE>(K*G%uPAjSzTD}j'}Ɲ.Ͽq/yfբVu1鼫tM(o叇Fw3Z%4RizuȪ <9E, MtRo'go h2(NOG{#S&u"a{U2ȢXlާ7I_wƺ^y'g][즦dPpRM땠3J*KcF/X`c.t#To*pRX32o)py4Z-+uU/i¦bt]1MB&rc=-Įuo7 u'W51`o LOt:2x2=Bc<g2x2L9. ,$4~OX: ó@y Q4x9c(M2Hgp" 'D)DEK p\й$1 XF Ef 2" K'Z

已知函数f(x)=x2+|x-a|+1,(x∈R) 1)画出a=0时函数f(x)的图像 2)求函数f(x)的最小值
已知函数f(x)=x2+|x-a|+1,(x∈R) 1)画出a=0时函数f(x)的图像 2)求函数f(x)的最小值

已知函数f(x)=x2+|x-a|+1,(x∈R) 1)画出a=0时函数f(x)的图像 2)求函数f(x)的最小值
(1)如图所示.另:可以google "x^2 + abs(x) + 1" 查看图像.
(2)x ≥ a时,f(x)=x^2+|x-a|+1 = x^2 + x - a + 1 = (x + 1/2)^2 - a + 3/4;
x ≤ a时,f(x)=x^2+|x-a|+1 = x^2 - x + a + 1 = (x - 1/2)^2 + a + 3/4.
下面按照a的取值不同分情况讨论:
a) 当a<-1/2时,有-1/2 ∈[a , +∞).注意到f(x)在[a , +∞)上的表达式为(x + 1/2)^2 - a + 3/4,因此f(x)在(a , +∞)上的最小值在x = -1/2时取得,最小值为 - a + 3/4.
若x在(-∞ , a]内,有x < a < -1/2 < 1/2.注意到f(x)在(-∞ , a]上的表达式为 (x - 1/2)^2 + a + 3/4,因此f(x)在(-∞ , a]的最小值在 x = a 时取得,最小值为a ^2 +1.
由于a <-1/2,a ^2 +1 + a - 3/4 = (a + 1/2)^2 > 0,故- a + 3/4 < a ^2 +1.从而f(x)在R上的最小值为- a + 3/4,在x = - 1/2时取得.
b) 当-1/2 ≤ a < 1/2时,若x∈[a , +∞),有x > -1/2.注意到f(x)在[a , +∞)上的表达式为(x + 1/2)^2 - a + 3/4,因此f(x)在[a , +∞)上的最小值在x = a时取得,最小值为a^2+1.
若x在(-∞ , a]内,有x < 1/2.注意到f(x)在(-∞ , a]上的表达式为 (x - 1/2)^2 + a + 3/4,因此f(x)在(-∞ , a]的最小值在 x = a 时取得,最小值为a ^2 +1.
因此当-1/2 ≤ a < 1/2时,f(x)最小值在x = a时取得,最小值为a^2 +1.
c) 当a ≥ 1/2时,若x∈[a , +∞),有x > -1/2.注意到f(x)在[a , +∞)上的表达式为(x + 1/2)^2 - a + 3/4,因此f(x)在[a , +∞)上的最小值在x = a时取得,最小值为a^2+1.
若x在(-∞ , a]内,有1/2 ∈(-∞ , a].注意到f(x)在(-∞ , a]上的表达式为 (x - 1/2)^2 + a + 3/4,因此f(x)在(-∞ , a]的最小值在 x = 1/2 时取得,最小值为 a + 3/4.
由于a ≥ 1/2,a ^2 +1 - a - 3/4 = (a - 1/2)^2 > 0,故 a + 3/4 < a ^2 +1.从而f(x)在R上的最小值为 a + 3/4,在x =  1/2时取得.
综上,当a<-1/2时,f(x)在R上的最小值为- a + 3/4,在x = - 1/2时取得;
当-1/2 ≤ a < 1/2时,f(x)在R上的最小值为a^2 +1,在x = a时取得;
当a ≥ 1/2时f(x)在R上的最小值为 a + 3/4,在x = 1/2时取得.