设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)使f(n)=(b-n)f'(n)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 19:43:38
x){nϦnHӨ|:gFN]/{{Li[OycJFf3E&>];ɎM;ndPliyIyi@MR>][~;K܀ڂlJU@D i$)ȳΆ'Bq6Ol4J$ف o
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)使f(n)=(b-n)f'(n)
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)
使f(n)=(b-n)f'(n)
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)使f(n)=(b-n)f'(n)
令F(x)=f(x)(b-x)
F(a)=0,F(b)=0
所以存在n,F'(n)=f'(n)(b-n)-f(n)=0
所以f(n)=(b-n)f'(n)
设函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
设函数f(x)在[a,b]上连续,在(a,b)内可导(0
设函数f 在[a,b]上连续,M=max|f(x)|(a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,a
设函数f(x)在闭区间[a,b]上连续,a
设函数f(x)在闭区间[a,b]上连续,a
设函数f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b)
若函数f(x)在[a,b]上连续,a