1/1*2+1/2*3+1/3*4++1/(X+1)(x+2)= 2011/2012

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:34:04
1/1*2+1/2*3+1/3*4++1/(X+1)(x+2)= 2011/2012
xTr0~1l$sx\{a G~)M6Ӓ6 C$dhiMxj +t%6PG߷r$Oiށ/" b*̠hP}.܃8xN4rc`b43KԔcÚ/bǔcniVhOx'F ;cU#̧n*=v&ՄQ'ړ#8##J|owńpޞ$ڲC}C: x+EVڧg/JZ2;8 ./+f#76KQ{LM(c֣;һ謼k!eP2)ʚؽRQeee_C~7v9~wpc{GhZ6ܻ"@A]| xU35!.bk׎sY[# N7I

1/1*2+1/2*3+1/3*4++1/(X+1)(x+2)= 2011/2012
1/1*2+1/2*3+1/3*4++1/(X+1)(x+2)= 2011/2012

1/1*2+1/2*3+1/3*4++1/(X+1)(x+2)= 2011/2012
注意到:
1/1*2 = (2-1)/1*2=1/1 - 1/2
1/2*3 = (3-2)/2*3=1/2 - 1/3
1/3*4 = (4-3)/3*4=1/3 - 1/4
.
1/(X+1)(x+2) = 1/(x+1) - 1/(x+2)
因此:上述各式相加,则:
左边=1/1*2+1/2*3+1/3*4+.+1/(X+1)(x+2)
右边=1/1 - 1/2+1/2 - 1/3+1/3 - 1/4+1/(x+1) - 1/(x+2)
=1-1/(x+2)
因此,原方程为:
1-1/(x+2) = 2011/2012
即:
(x+1)/(x+2) = 2011/2012

2012(x+1)=2011(x+2)
2012x+2012=2011x+4022
x=2010

1/1*2+1/2*3+1/3*4++1/(X+1)(x+2)= 2011/2012
1-1/2+1/2-1/3+……+1/(X+1)-1/(x+2)= 2011/2012
1-1/(x+2)= 2011/2012
1/(x+2)=1- 2011/2012
1/(x+2)=1/2012
x+2=2012
x=2010

1/1*2=1-1/2
1/2*3=1/2-1/3
1/3*4=1/3-1/4
。。。
。。。
1/(x+1)(x+2)=1/(x+1)-1/(x+2)
所以,左式=1-1/2+1/2-1/3+1/3-1/4+。。。+1/(x+1)-1/(x+2)
=1-1/(x+2)
...

全部展开

1/1*2=1-1/2
1/2*3=1/2-1/3
1/3*4=1/3-1/4
。。。
。。。
1/(x+1)(x+2)=1/(x+1)-1/(x+2)
所以,左式=1-1/2+1/2-1/3+1/3-1/4+。。。+1/(x+1)-1/(x+2)
=1-1/(x+2)
=(x+1)/(x+2)
所以,(x+1)/(x+2)=2011/2012
得:x=2010
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O

收起