求y=x^3/(x^2-3x-4)的高阶导数y(n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 05:26:22
求y=x^3/(x^2-3x-4)的高阶导数y(n)
x){Ҷ"X_"H׸BDg=Ϧn|#N"}Rِl>Z TLPS!TcmkMH$5ĪBפB۴B@Ii!X MRfh`o6j ط܆mON 0yim @Ǚ

求y=x^3/(x^2-3x-4)的高阶导数y(n)
求y=x^3/(x^2-3x-4)的高阶导数y(n)

求y=x^3/(x^2-3x-4)的高阶导数y(n)
y=x^3/(x^2-3x-4)
=x^3/(x+1)(x-4)
=(x^3+1-1)/(x+1)(x-4)
=(x^2+x+1)/(x-4)-1/(x+1)(x-4)
=(x^2-4x+5x-20+21)/(x-4)-1/5[1/(x-4)-1/(x+1)]
=x+5+21/(x-4)-1/5[1/(x-4)-1/(x+1)]
=x+5+104/5*1/(x-4)+1/5*1/(x+1)
接着再套求导公式即可!