锐角三角形ABC中sin(A+B)=p,sinA+sinB=Q,cosA+cosB=R,比较P,Q,R的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 01:12:18
锐角三角形ABC中sin(A+B)=p,sinA+sinB=Q,cosA+cosB=R,比较P,Q,R的大小
xPJ@~SkҠɋ$ ԓ%)HAQ=I[(V0%ƓΤ>^fE-wm|j7'MKڪ#bMQ< ǧMQ<$E+g> H_Pvљ Hxc>$Q@h%"vkdߟ,ܔA+x*|TB s)7 (FZnMuDVD=o%QCVFU?sIjœ{Jɑysς{^NVfzv7 \

锐角三角形ABC中sin(A+B)=p,sinA+sinB=Q,cosA+cosB=R,比较P,Q,R的大小
锐角三角形ABC中sin(A+B)=p,sinA+sinB=Q,cosA+cosB=R,比较P,Q,R的大小

锐角三角形ABC中sin(A+B)=p,sinA+sinB=Q,cosA+cosB=R,比较P,Q,R的大小
令x=(A+B)/2,y=(A-B)/2
x>y,cosx(180-90)/2=45度
所以sinx>cosx
P=2sinxcosx
Q=2sinxcosy>P
R=2cosxcosy

P-Q=sin(A+B)-sinA-sinB=sinAcosB+cosAsinB-sinA-sinB=
=(cosB-1)sinA+(cosA-1)sinB
∵A,B是锐角,∴cosB-1<0, cosA-1<0, sinA>0, SINB>0
∴P-Q<0即P同理可证得:P