定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间【-1,0】上递增,则 ()A.f(3)<f(√2)<f(2) B.f(2)<f(3)<f(√2) C.f(3)<f(2)<f(√2) D.f(√2)<f(2)<f(3) ,我自己有做但不明白哪错了,f(3)=f(2+1)=-f(2) f(2)=f(

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 10:37:31
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间【-1,0】上递增,则 ()A.f(3)<f(√2)<f(2) B.f(2)<f(3)<f(√2) C.f(3)<f(2)<f(√2) D.f(√2)<f(2)<f(3) ,我自己有做但不明白哪错了,f(3)=f(2+1)=-f(2) f(2)=f(
xVRP~,a D>Av㴛.@BA*e X]7ɊW9S;;әvCr= jsbM֦!\e/9Ψ+ 4sW7ѽ*o`FGh`'J`.8Vߍ&޴T?gS}/_Tn;,%NJ;MVӵ<n+r)pHneT]3? _s9'QGITQAp +꼧߃٦{)N/[zȮYXťpPsiMѠAB_l6G*} 볫'&%^⌺̫^/j"mt i25 DXB\c²:V2 kjMJf0Se |Z2IV7/^E@IC٩z] A͆1d(r{p`aD]^naHP]~cK~`٢Sډsun -Cg AbtUL ډ];'g BL(ʝnU܍ mf }*)ߚVPq,B*wk h?L`LC1k]9r_Qw]7%8 v&oC @MloLH$hAdVnMC> Ȣ{ 5c`x8T C6`ot?9

定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间【-1,0】上递增,则 ()A.f(3)<f(√2)<f(2) B.f(2)<f(3)<f(√2) C.f(3)<f(2)<f(√2) D.f(√2)<f(2)<f(3) ,我自己有做但不明白哪错了,f(3)=f(2+1)=-f(2) f(2)=f(
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间【-1,0】上递增,则 ()
A.f(3)<f(√2)<f(2) B.f(2)<f(3)<f(√2) C.f(3)<f(2)<f(√2) D.f(√2)<f(2)<f(3) ,我自己有做但不明白哪错了,f(3)=f(2+1)=-f(2) f(2)=f(1+1)=-f(1) 所以f(3)=f(1) f(√2)=f(0.414+1)=-f(0.414) 然后我就得出了答案D,然后错了.
我已经误导了我们班3个孩儿了。

定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间【-1,0】上递增,则 ()A.f(3)<f(√2)<f(2) B.f(2)<f(3)<f(√2) C.f(3)<f(2)<f(√2) D.f(√2)<f(2)<f(3) ,我自己有做但不明白哪错了,f(3)=f(2+1)=-f(2) f(2)=f(
f(x+2)=f[(x+1)+1]=-f(x+1)=-(-f(x))=f(x),所以周期为2,又已知在[-1,0]上递增,是偶函数,所以在[0,1]上递减,把区间[-1,0]右移2个单位,所以在[1,2]上是递增,
f(3)=f(2+1)=f(1),1

前面计算没错,可能最后判断出问题了
定义在R上的偶函数f(x)所以在【0,1】递减
f(0)=f(2) , f(3)=f(1), f(√2)=f(0.414+1)=-f(0.414)
f(0.414)无论正负都会在f(0),f(1)之间的,
0<0.414<1
所以A.f(3)<f(√2)<f(2)
正确解法如下:
f(x+1)=-f(x),...

全部展开

前面计算没错,可能最后判断出问题了
定义在R上的偶函数f(x)所以在【0,1】递减
f(0)=f(2) , f(3)=f(1), f(√2)=f(0.414+1)=-f(0.414)
f(0.414)无论正负都会在f(0),f(1)之间的,
0<0.414<1
所以A.f(3)<f(√2)<f(2)
正确解法如下:
f(x+1)=-f(x),
f(x+1+1)=-f(x+1),
f(x+2)=f(x)
在【-1,0】上递增
所以在【-1,2】上递增
f(3)=f(1)
又1<√2<2
所以有A.f(3)<f(√2)<f(2)

收起

f(x+1)=-f(x) f(x+2)=-f(x+1) 则f(x)=f(x+2) f(x)是周期函数,周期为2。f(3),f(2),f(根号2)的关系与f(1),f(0),f(根号2-2)的关系相同。又f(x)在[-1,0]递增,原函数为偶函数f(根号2-2)=f(2-根号2),易知f(1)你的计算过程并没有推导出题目要求的...

全部展开

f(x+1)=-f(x) f(x+2)=-f(x+1) 则f(x)=f(x+2) f(x)是周期函数,周期为2。f(3),f(2),f(根号2)的关系与f(1),f(0),f(根号2-2)的关系相同。又f(x)在[-1,0]递增,原函数为偶函数f(根号2-2)=f(2-根号2),易知f(1)你的计算过程并没有推导出题目要求的结论
你的计算过程中的f(3)=-f(2)并不能说明f(3)>f(2),因为f(2)的正负未知。

收起