已知f(x)=ax^3+bx^2-3x+1/3,求函数f(x)在[-4,4]已知f(x)=ax^3+bx^2-3x+1/3,求函数f(x)在[-4,4]的最大值和最小值f(2)=-7,f'(2)=-3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 14:50:43
已知f(x)=ax^3+bx^2-3x+1/3,求函数f(x)在[-4,4]已知f(x)=ax^3+bx^2-3x+1/3,求函数f(x)在[-4,4]的最大值和最小值f(2)=-7,f'(2)=-3
已知f(x)=ax^3+bx^2-3x+1/3,求函数f(x)在[-4,4]
已知f(x)=ax^3+bx^2-3x+1/3,求函数f(x)在[-4,4]的最大值和最小值
f(2)=-7,f'(2)=-3
已知f(x)=ax^3+bx^2-3x+1/3,求函数f(x)在[-4,4]已知f(x)=ax^3+bx^2-3x+1/3,求函数f(x)在[-4,4]的最大值和最小值f(2)=-7,f'(2)=-3
f(x)=ax^3+bx^2-3x+1/3,
f(2)=8a+4b-6+1/3=-7,
f'(x)=3ax^+2bx-3,
f'(2)=12a+4b-3=-3,b=-3a,
解得a=1/3,b=-1.
∴f(x)=(1/3)x^3-x^-3x+1/3,
f'(x)=x^-2x-3=(x+1)(x-3),
-1
全部展开
f(x)=ax^3+bx^2-3x+1/3,
f(2)=8a+4b-6+1/3=-7,
f'(x)=3ax^+2bx-3,
f'(2)=12a+4b-3=-3,b=-3a,
解得a=1/3,b=-1.
∴f(x)=(1/3)x^3-x^-3x+1/3,
f'(x)=x^-2x-3=(x+1)(x-3),
-1
f(-4)=-25,f(4)=-19/3,f(-1)=2,f(3)=-26/3
∴函数f(x)在[-4,4]的最大值为2,最小值为-25.
收起
f(2)=-7,f'(2)=-3代入可得a=1/3,b=-1
f(x)=(1/3)x^3-x^2-3x+1/3
f'(x)=x^2-2x-3=(x=1)(x-3)
极大值f(-1)
极小值f(3)
f(x)在(-4,-1)和(3,4)递增
(-1,3)递减
比较f(-4)f(-1)f(3)f(4)就可以了
f(-4)=-25
...
全部展开
f(2)=-7,f'(2)=-3代入可得a=1/3,b=-1
f(x)=(1/3)x^3-x^2-3x+1/3
f'(x)=x^2-2x-3=(x=1)(x-3)
极大值f(-1)
极小值f(3)
f(x)在(-4,-1)和(3,4)递增
(-1,3)递减
比较f(-4)f(-1)f(3)f(4)就可以了
f(-4)=-25
f(-1)=2
f(3)=-26/3
f(4)=-19/3
综上所述f(x)MAX=f(-1)=2,f(x)MIN=f(-4)=-25
收起