sin(x+y)=1\2,sin(x—y)=1\3,求[tan(x+y)-tanx-tany]\[tany的平方tan(x+y)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 00:56:37
sin(x+y)=1\2,sin(x—y)=1\3,求[tan(x+y)-tanx-tany]\[tany的平方tan(x+y)]
x)+{BR0Hըx0NγM%P5@A] DTƀ$*jysi;4cmid~ ]6ȨH/@NXZ.W\$oekoh$ehr>rpzܫӽ  u `]`.Ԅ8#\A8}t~qAb(Vt

sin(x+y)=1\2,sin(x—y)=1\3,求[tan(x+y)-tanx-tany]\[tany的平方tan(x+y)]
sin(x+y)=1\2,sin(x—y)=1\3,求[tan(x+y)-tanx-tany]\[tany的平方tan(x+y)]

sin(x+y)=1\2,sin(x—y)=1\3,求[tan(x+y)-tanx-tany]\[tany的平方tan(x+y)]
sin(x+y)=sinxcosy+cosxsiny=1/2 sin(x-y)=sinxconsy-cosxsiny=1/3 sinxcosy=5/12,cosxsiny=1/12 tanx/tany=sinxcosy/cosxsiny=5.[tan(x+y)-tanx-tany]/[tany的平方tan(x+y)] =[(tanx+tany)/(1-tanxtany)-(tanx+tany)]/[tany^2(tanx+tany)/(1-tanxtany)] =[tanxtany(tanx+tany)]/[tany^2(tanx+tany)] =tanx/tany =5.