1/(x+1)(x+2)+.+1/(x+2009)(x+2010)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 04:33:08
1/(x+1)(x+2)+.+1/(x+2009)(x+2010)
x)3ר6Fz`%X@&HUv6T3M6PB3V;ʂE5,L* 1 lA/.H̳zAv,0]Cfh_t˛~O96<d?_tɴ'{\4uOv}9}˓{nt<؀n[ C}} @@,`pEBB(L H@(!?

1/(x+1)(x+2)+.+1/(x+2009)(x+2010)
1/(x+1)(x+2)+.+1/(x+2009)(x+2010)

1/(x+1)(x+2)+.+1/(x+2009)(x+2010)
1/(x+1)(x+2)+.+1/(x+2009)(x+2010)
=[1/(x+1)-1/(x+2)]+[1/(x+2)-1/(x+3)]+…+[1/(x+2009)-1/(x+2010)]
=1/(x+1)-1/(x+2010)
=2009/[(x+1)(x+2010)]

1/(x+1)(x+2)=1/(x+1) - 1/(x+2)
自己观察,看着办,另外你题目中间不确定不好说呀

=(1/x+1 - 1/x+2)+(1/x+2 - 1/x+3)+........+(1/x+2008 - 1/x+2009)+(1/x+2009 - 1/x+2010)
=1/x+1 - 1/x+2010