求函数y=sin²x+√3cosx+4/1的最大值及最小值并写出x取何值时函数有最大值和最小值在十二点以前

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 09:40:29
求函数y=sin²x+√3cosx+4/1的最大值及最小值并写出x取何值时函数有最大值和最小值在十二点以前
xTn0KHUaC".2i*FE_73M]ZuJ6mTmX?tvƞ \۩K[Cs|}}εr19;}ZGCgveXsz#O[}J:},gs5fs_D5HԛWT?VI>".{OT^B)qa O3Oarɤ~(!i璔bОD fY@FM4Fנ,s_ad{L {I>@^^uҘ N=^cE8rI3fwH`Zt+bڄ,ì"3HDl{i\EWl% r[gк)3jQ\#=ZVr-gkW?JgUCCJɏٝwdn>ϓ0>؅E蓹i5y\/kq7gɪoѨbʒȍw/Q a

求函数y=sin²x+√3cosx+4/1的最大值及最小值并写出x取何值时函数有最大值和最小值在十二点以前
求函数y=sin²x+√3cosx+4/1的最大值及最小值并写出x取何值时函数有最大值和最小值
在十二点以前

求函数y=sin²x+√3cosx+4/1的最大值及最小值并写出x取何值时函数有最大值和最小值在十二点以前
4/1是4分之1吧?
y=sin²x+√3cosx+1/4
=1-cos²x+√3cosx+1/4
=-cos²x+√3cosx+5/4
=-(cos²x-√3cosx+3/4)+3/4+5/4
=-(cosx-√3/2)²+2
∵ -1≤cosx≤1
∴-1-√3/2≤cosx-√3/2≤1-√3/2
则0≤(cosx-√3/2)²≤(-1-√3/2)²=7/4+√3
即1/4-√3≤-(cosx-√3/2)²+2≤2
∴当cosx=√3/2时,即x=±π/6+2kπ,k为整数时
y取得最大值2
当cosx=-1时,即x=π+2kπ,k为整数时
y取得最小值1/4-√3

函数y=sin²x+√3cosx+1/4
=1-cos^2x+√3cosx+1/4
=-cos^2x+√3cosx+5/4
=-(cos^2x-√3cosx+3/4)+2
=-(cosx-√3/2)^2+2
cosx∈【-1,1】
所以
当cosx=√3/2时,最大值=2
当cosx=-1时, 最小值=-√3+1/4

y=sin²x+√3cosx+1/4
=1-cos²x+√3cosx+1/4
=2-(cosx-√3/2)²
当cosx=√3/2时,y有最大值2
x=2kπ±π/3
当cosx=-1时,y有最小值1-√3
x=(2k+1)π

y=sin²x+√3cosx +1/4 (顺便说一下,你4分之1写反了)
=1-cos²x+√3cosx +1/4
=-cos²x+√3cosx +5/4
=-(cosx- √3/4)²+23/16
cosx=√3/4时,y有最大值ymax=23/16
cosx=-1时,y有最小值1/4 -√3