如图,若直线y=x被双曲线y==k²/x与双曲线y=2k²/x在第一象限所截得的线段长为2-根号2(1)求K的值 (2)在坐标轴上是否存在一点P,使S△ABP=2,若存在,求出P点的坐标;若不存在,说明理由
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 08:22:36
xSS@W&4).3iq3^GCk)G0
iEA(:(:0hK-ti8/iO\ew& kΓ)iWkS<#+K^
qfg5]ds{߭G+^isӷP8s(m͒w4?%d6]ZOjn.8nnkLcHt"4hfnU?ykBQBfozoJNG^&zIնqo.H{ qo=̌uelgvTSs^,ϲ9C-O}¨q}(5qtC qG&S%I&2eQee82n
F\W
]eAM7'K$fFZ %s#-11"u7$7bQFhHTEUx`jߨ#8e&/v.-\a(B /$r6P+@@cxJa%P$px`yw5pJ)H!lႛݓM%*ВrI^Ea[+)C
_^'+i<&AukqfnC&F@X
如图,若直线y=x被双曲线y==k²/x与双曲线y=2k²/x在第一象限所截得的线段长为2-根号2(1)求K的值 (2)在坐标轴上是否存在一点P,使S△ABP=2,若存在,求出P点的坐标;若不存在,说明理由
如图,若直线y=x被双曲线y==k²/x与双曲线y=2k²/x在第一象限所截得的线段长为2-根号2
(1)求K的值
(2)在坐标轴上是否存在一点P,使S△ABP=2,若存在,求出P点的坐标;若不存在,说明理由
如图,若直线y=x被双曲线y==k²/x与双曲线y=2k²/x在第一象限所截得的线段长为2-根号2(1)求K的值 (2)在坐标轴上是否存在一点P,使S△ABP=2,若存在,求出P点的坐标;若不存在,说明理由
(1)分别把y=x代入双曲线解析式,
解得A(k,k),B(√2k,√2k)
∴OA=√2K,OB=2K,
AB=(2-√2)K=2-√2,
∴k=1
(2)设在X轴上存在点P(m,0),作AC⊥X轴于C,BD⊥X轴于D,
则AC=1,BD=√2,
S△ABP=S△OBP-S△OAP
=1/2lml(√2-1)=2
解得lml=4(√2+1)=4√2+4
∴P(4√2+4,0)或(-4√2-4,0)
同理在Y轴上有P(0,4√2+4)或(0,-4√2-4)