已知a,b为正整数,2b+ab+a=30,求函数y=1/ab的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 21:59:33
已知a,b为正整数,2b+ab+a=30,求函数y=1/ab的最小值
xQN@~ Ũ$-}Cĭ"`6!Xø-'^鶂fovoT^ݮ +65LN4|j<&Y Ӫ$jm߰GU\k h0FP{fC[$l&V˟XNm/A^NDoJJa,1y&BI.8 l;m $!c.N Vm~_cF4A['W;lQ2k-qӊm>Z&؁%0r 7x. O ;|oG4\Saxur: ΐF'?}D( [

已知a,b为正整数,2b+ab+a=30,求函数y=1/ab的最小值
已知a,b为正整数,2b+ab+a=30,求函数y=1/ab的最小值

已知a,b为正整数,2b+ab+a=30,求函数y=1/ab的最小值
别听楼上的,a,b是正整数ab最大值不可能是29.
b=1,a=14
b=3,a=6
b=7,a=2
y最小为1/18
解法:2b始终为偶数,30-2b也是偶数,所以ab+a必须是偶数恒成立,所以b一定是奇数,且b不能大于10(当a=1时,b接近10).配凑一下即得答案.

因y=1/ab,2b+ab+a=30
所以ab=30-a-2b。y=1/30-a-2b
因a,b为正整数
ab的范围就为0-29
y的最小值为1/29