与x轴相切,且与圆x²+(y-3)²=1相内切的圆的方程为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 08:25:17
与x轴相切,且与圆x²+(y-3)²=1相内切的圆的方程为
xUn@JU+@*S~Mx3 %j5)-KOBg}Z׳gΜ9^M&I~X@\|O>xEU9 |h3 10[zYQ8dXD$nZX ڨjf''t4dS@bQm@SPih(g4@Շ[]pm+ H;l&A7 LB|L;VEܹ%#?26-

与x轴相切,且与圆x²+(y-3)²=1相内切的圆的方程为
与x轴相切,且与圆x²+(y-3)²=1相内切的圆的方程为

与x轴相切,且与圆x²+(y-3)²=1相内切的圆的方程为
∵已知圆的圆心坐标为(0,3)、半径为1,∴已知圆与x轴相离.
∵所要求的圆与圆x^2+(y-3)^2=1相内切,又与x轴相切,
∴所要求的圆的的圆心一定在x轴的上方,且所要求的圆与已知圆的位置关系有以下三种情况:
一、当所要求的圆与已知圆相切于上方时,所要求的圆的圆心必在y轴上,设为(0,m).
  显然,所要求的圆的半径=m,∴圆心距=m-1=3-m,∴2m=4,∴m=2.
  ∴此时所要求的圆是:x^2+(y-2)^2=4.
二、当所要求的圆与已知圆相切于左侧时,所要求的圆的圆心必在第一象限内,设为(a,b).
  显然,要求的圆的半径=b,∴圆心距=b-1,且b=a+1.
  由勾股定理,有:(b-1)^2=(b-3)^2+a^2.
  联立::(b-1)^2=(b-3)^2+a^2、b=a+1,消去b,得:
  (a+1-1)^2=(a+1-3)^2+a^2,∴a=2,∴b=a+1=2+1=3.
  ∴此时所要求的圆是:(x-2)^2+(y-3)^2=9.
三、当所要求的圆与已知圆相切于右侧时,所要求的圆的圆心必在第二象限内,设为(-c,d).
  显然,所要求的圆的半径=d,圆心距=d-1,且d=c+1.
  由勾股定理,有:(d-1)^2=(d-3)^2+c^2.
  联立:(d-1)^2=(d-3)^2+c^2、d=c+1,消去d,得:
  (c+1-1)^2=(c+1-3)^2+c^2,∴c=2,∴d=c+1=2+1=3.
  ∴此时所要求的圆是:(x+2)^2+(y-3)^2=9.
综上所述,得:满足条件的圆有三个,分别是:
x^2+(y-2)^2=4、(x-2)^2+(y-3)^2=9、(x+2)^2+(y-3)^2=9.

y^2=(y-3)^2+x^2+1
至于化简很容易的。。。