用E(X+Y)=EX+EY,去概述伯努利过程有2项式分布.用n*p来表示期望值UsingE(X+Y)=EX+EY.and that the sumof a Bernoulli process has a binomial distribution,show that the expectationvalue of the binomial distribution is n · p.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 03:50:17
用E(X+Y)=EX+EY,去概述伯努利过程有2项式分布.用n*p来表示期望值UsingE(X+Y)=EX+EY.and that the sumof a Bernoulli process has a binomial distribution,show that the expectationvalue of the binomial distribution is n · p.
xRn@b9$ $tZCFJQUyͣ邊6qU"*mTNjķx* D+{Bb =Kάͽݼ$g5]p6=Շzjը7a^YϙDʏO O}.D{=h`V4Z.}]5 ()ED)1 )VMkQ-8T]7x* c-4+VfO~$Crq'Cw}wxiis{ڇQ- 6'A)|wJ~/߇L+sϘu$]5.FTk~ ߇nkj,"ȩ4F|2Lc!yO,= ^'_|2A^ ȫx9m5r1oY7)n-xǻ8("X숍b N7O õAb"i3.g\֠VKa

用E(X+Y)=EX+EY,去概述伯努利过程有2项式分布.用n*p来表示期望值UsingE(X+Y)=EX+EY.and that the sumof a Bernoulli process has a binomial distribution,show that the expectationvalue of the binomial distribution is n · p.
用E(X+Y)=EX+EY,去概述伯努利过程有2项式分布.用n*p来表示期望值
UsingE(X+Y)=EX+EY.and that the sum
of a Bernoulli process has a binomial distribution,show that the expectation
value of the binomial distribution is n · p.

用E(X+Y)=EX+EY,去概述伯努利过程有2项式分布.用n*p来表示期望值UsingE(X+Y)=EX+EY.and that the sumof a Bernoulli process has a binomial distribution,show that the expectationvalue of the binomial distribution is n · p.
设Xi是一个伯努利随机变量,该伯努利试验成功的概率为p,此时记Xi=1;否则,记Xi=0;
独立重复的进行n次该伯努利试验,X表示n次试验中的成功次数,那么有关系:
X = X1 + X2 + ... +Xn
根据E(X+Y)=EX+EY,对上式作用有:
EX = E( X1 + X2 + ... +Xn ) = EX1 + EX2 + ... + EXn = p + p + ... + p = n*p .
这就是说,n次独立的伯努利试验成功的次数是一个二项分布.