直角梯形ABCD中,AD‖BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE‖AB,交∠BCD的平分线于点E,连接B(1).求证;BC=CD (2).将△BCE绕点C顺时针旋转90°得到△DCG,连接EG.求证;CD垂直平分EG;(3).延长BE交CD于

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 15:57:07
直角梯形ABCD中,AD‖BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE‖AB,交∠BCD的平分线于点E,连接B(1).求证;BC=CD (2).将△BCE绕点C顺时针旋转90°得到△DCG,连接EG.求证;CD垂直平分EG;(3).延长BE交CD于
xU[OG+RDYyomZ/گV@mnLUO-&`* !iZKjԟv'B]#!J}˜ssΙTq[oWwG;ab8\_"]UD9|J*fi"q)76*3>mؕnj@M7NmDsѳ:`/= W/k:v[8/?iņ]9-3>babc-Gg;{H v-e<= ,70: za!k)8s"! R@^]4A+M4\ Q*QRT-V #qeD@l]Ps4'ie18ԧޱL`eP 찀#O G)ag5Y-5U*'3 I0ۀ%`|9J`?6J/0ݾ8%[Ȋ#'6H.E?a_nxyxPiZJkzCs}`- Uuɫ_X4;j a'ɤ9tMYlz7ZGF E'J'IC(@w74fPTb^SP7ԩ"#0dLY;@|-xzaP5g GC-З OGoRI+|EJOMeljv9ѩBqjfv5B9qg$.$Tx<3DMqRLsz2&'.tqas ˆ`$9Q ]͜(JnD.B(w%"R>. 9My!&œq7;³ hx}{H5

直角梯形ABCD中,AD‖BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE‖AB,交∠BCD的平分线于点E,连接B(1).求证;BC=CD (2).将△BCE绕点C顺时针旋转90°得到△DCG,连接EG.求证;CD垂直平分EG;(3).延长BE交CD于
直角梯形ABCD中,AD‖BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE‖AB,交∠BCD的平分线于点E,连接B
(1).求证;BC=CD (2).将△BCE绕点C顺时针旋转90°得到△DCG,连接EG.求证;CD垂直平分EG;(3).延长BE交CD于点P,求证;P是CD的中点.
连接BE

直角梯形ABCD中,AD‖BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE‖AB,交∠BCD的平分线于点E,连接B(1).求证;BC=CD (2).将△BCE绕点C顺时针旋转90°得到△DCG,连接EG.求证;CD垂直平分EG;(3).延长BE交CD于
(1)过A作BC和垂线交BC于F,连DF.
tan∠ABC=2 AF/BF=2 DC/AD=AF/AD=2 BF=AD
因为AD//BC 所以BFDA是平行四边形,因此E在DF上.因此BC=BF+FC=2AD=CD
(2)将△BCE绕点C顺时针旋转90°得到△DCG(不是顺时针是逆时针)
所以 △BCE与△DCG全等,所以CE=CG ∠GCD=∠DCE=45度,因此CD是等腰△CGE的平分线,因此CD垂直平分EG.
(3)因为CD垂直平分EG,所以∠CDE=∠CDG ,
因为△BCE与△DCG全等,所以∠CDE=∠CBE,
所以∠CDE=∠CBE
因为CD=CB ∠DCB=90度,所以△CDF与△CBP全等,因此CP=CF=1/2BC=1/2CD
P是CD中点

(1)延长DE交BC于F,得平行四边形ABFD,根据平行四边形的性质以及锐角三角函数的概念找到线段之间的关系,从而证明结论;

(2)根据旋转的性质,只需说明ED=GD,CE=CG,即可证明;

(3)根据已知条件,要证明P是CD的中点,只需证明PD=AD,借助全等即可证明.

证明:(1)延长DE交BC于F,

∵AD‖BC,AB‖DF,

∴AD=BF,∠ABC=∠DFC.

在Rt△DCF中,

∵tan∠DFC=tan∠ABC=2,

∴ CDCF=2,

即CD=2CF,

∵CD=2AD=2BF,

∴BF=CF,

∴BC=BF+CF= 12CD+ 12CD=CD.

即BC=CD.

(2)∵CE平分∠BCD,

∴∠BCE=∠DCE,

由(1)知BC=CD,

∵CE=CE,

∴△BCE≌△DCE,

∴BE=DE,

由图形旋转的性质知CE=CG,BE=DG,

∴DE=DG,

∴C,D都在EG的垂直平分线上,

∴CD垂直平分EG.

(3)连接BD,

由(2)知BE=DE,

∴∠1=∠2.

∵AB‖DE,

∴∠3=∠2.∴∠1=∠3.

∵AD‖BC,∴∠4=∠DBC.

由(1)知BC=CD,

∴∠DBC=∠BDC,∴∠4=∠BDP.

又∵BD=BD,∴△BAD≌△BPD,

∴DP=AD.

∵AD= 12CD,∴DP= 12CD.

∴P是CD的中点.

直角梯形ABCD中,AD‖BC,∠B=90°,AD+BC 在直角梯形ABCD中,AD//BC, 在直角梯形ABCD中,AD//BC, 如图,在直角梯形ABCD中,AD‖BC,AB⊥BC,AD=2,BC=4,点E在AB边上,且CE平分∠BCD,DE平分∠ADC,求点E到CD的距离 如图,直角梯形ABCD中,AD∥BC,AB⊥BC,△BCD是等边三角形,且BC=2厘米,求梯形ABCD的面积 已知:如图,直角梯形ABCD中,AD平行BC,AB垂直BC,全等三角形BCD是等边三角形,且BC=2厘米,求AD的长 如图,已知直角梯形ABCD中,AD∥BC,∠A=90°,△BCD为等边三角形,且AD=√2,求梯形ABCD的周长. 如图,已知直角梯形ABCD中,AD平行于BC,∠A=90°,△BCD为等边三角形,且AD=根号2,求梯形ABCD的面积 梯形ABCD中,AD‖BC(AD 梯形ABCD中,AD‖BC(AD 梯形ABCD中,AD‖BC(AD 在直角梯形ABCD中,AB⊥BC,AD平行BC,∠BCD=30°,DC=4,BC=3根号3,求梯形两条对角线的长 在直角梯形ABCD中,AB⊥BC,AD∥BC,∠BCD=30,DC=4cm,BC=3根号3,求这个梯形两条对角线的长 如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,CE平分∠BCD,DE∥AB,BC=CD (1)求证:△BCE≌△DCE如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,CE平分∠BCD,DE∥AB,BC=CD(1)求证:△BCE≌△DCE;如果AD=1,BC=2,求梯形ABCD的面积 在梯形ABCD中,AD‖BC,AB=BC=DC,点E,F分别在AD,AB上,且∠FCE=1/2∠BCD. 已知直角梯形ABCD中,AD‖BC,AB⊥BC,AD=2,BC=DC=5,求直角梯形ABCD的面积 如图,梯形ABCD中AD‖BC,E为AB的中点,CE恰好平分∠BCD,求证:CD=AD+BC 梯形ABCD中,AD‖BC,M是AB上的点,若DM平分角ADC,CM平分∠BCD,求AD+BC=DC