设f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x0∈[0,1/3]使得f(x0)=f(2x0+(1/3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:53:33
xP
@G}h1Gk)ʆTђIZKܗ>FwgAt}gm 6:Fc'D)bf% eAﵜTI䀿Ӓmt]Q+
r{}A}8lcYcQW-]+~X@B 1B~ў171!x L?Aٙ#pZ;$o4c4k5:h*7
设f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x0∈[0,1/3]使得f(x0)=f(2x0+(1/3
设f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x0∈[0,1/3]使得f(x0)=f(2x0+(1/3
设f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x0∈[0,1/3]使得f(x0)=f(2x0+(1/3
令 F(x)=f(x)-f(2x+1/3) 则F(0)=f(0)-f(1/3)=f(1)-f(1/3)=-F(1/3)
若F(0)=0 则取x0为0即可,若否则F(0),F(1/3) 异号,由介值定理,存在x0∈[0,1/3]
使得F(x0)=0 即f(x0)=f(2x0+1/3)
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|
设f(x)在[0,1]上连续,且f(x)
高等数学问题:设f(x)在[0,1]上连续,且f(x)
设f(x)在区间[0,1]上连续,且f0)f(1)
设f(x)在[0,1]上连续,且f(t)
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
设函数f(x)在闭区间[0,1]上连续,且0
设函数y=f(x)在[0,1]上连续,且0
设函数y=f(x)在[0,1]上连续,且0
一道高数题,证明:设f(x)在[0,1]上连续,且0
设f(x)在[0,2]上连续,在(0,2)上可微,且f(0)*f(2)>0,f(0)*f(1)
设函数f(x)在[0,无穷)上连续可导,且f(0)=1,|f'(x)|0时,f(x)
一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(x)=?设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x) ∫(0,1) f(x)dx ,则f(x)=
设f''(x)在[0,1]上连续,f'(1)=0,且f(1)-f(2)=2,则∫(0,1)xf''(x)dx=
设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|
设函数f(x)在(01]上连续,且极限lim->0+f(x)存在,证明函数f(x)在(0,1]上有界
设f(x)在[0,+∞)上连续,且∫(0,x)f(t)dt=x(1+cosx),则f(x)=?