已知函数f(x),当x,y在R上时,恒有:f(x*y)=x*f(y)+y*f(x).求证函数是奇函数.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:09:26
已知函数f(x),当x,y在R上时,恒有:f(x*y)=x*f(y)+y*f(x).求证函数是奇函数.
xN@_]MxGC A6$hmy]Wp?ZٙcV,

已知函数f(x),当x,y在R上时,恒有:f(x*y)=x*f(y)+y*f(x).求证函数是奇函数.
已知函数f(x),当x,y在R上时,恒有:f(x*y)=x*f(y)+y*f(x).求证函数是奇函数.

已知函数f(x),当x,y在R上时,恒有:f(x*y)=x*f(y)+y*f(x).求证函数是奇函数.
x=y=1------>f(1)=2f(1)--------->f(1)=0
x=y=-1----->f(1)=-2f(-1)------->f(-1)=0
x=-1--------->f(-y)=-f(y)+yf(-1)=-f(y)+0
所以,是奇函数.

f(x*y)=x*f(y)+y*f(x).
设y=-1,则f(-x)=x*f(-1)-f(x)
f(x)+f(-x)=x*f(-1)
用-x代x:
f(-x)+f(x)=-x*f(-1)
所以
f(-x)+f(x)=-x*f(-1)=-[f(x)+f(-x)]
f(x)+f(-x)=0
f(x)=-f(-x)
奇函数。

你的*是什么意思?

因为f(x)对任意x,y都有f(xy)=xf(y)+yf(x)
∴令x=t,y=-1,有f(-t)=-f(t)+t*f(-1)
令x=y=-1时.代入得f(-1)=0
将f(-1)=0代入得,f(-t)=-f(t)
∴函数是奇函数

已知函数f(x),当x,y在R上时,恒有:f(x*y)=x*f(y)+y*f(x).求证函数是奇函数. 已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,+∞)上的单调性... 已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,正无穷)上的单调性 已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,+∞)上的单调性. 已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,正无穷)上的单调性 已知函数f(x),当x,y属于R,恒有f(x+y)=f(x)+f(y),当x大于0时,f(x)大于0,判断f(x)在(0,+无穷大)上的单调性. 已知定义在R上的函数f(x)对任意实数x,y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x) 已知定义域在R上的函数f(x)对任意实数x.y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x) 已知定义域在R上的函数f(x)对任意实数x.y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x) 已知定义域在R上的函数f(x)对任意实数x.y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x) 已知定义在R上的函数F(x)对任意x,y恒有F(x)+F(y)=F(x+y),且当X>0时,F(x) 已知定义在R上的函数y=f(x),对任意x,y∈R,有f(x+y)=f(x)f(y),且当x>o时,f(x)>1已知定义在R上的函数y=f(x),对任意x,y∈R,有f(x+y)=f(x)f(y),且当x>o时,f(x)>11) 求证 对于x∈R,f(x)>0恒成立2)证 y=f(x)在R上为增函 已知函数f(x)是定义在R+上的函数,对于任意x,y属于R+,都有f(x)+f(y)=f(x*y),且当仅且x>1时,f(x) 已知定义在R上的函数f(x)满足下面两个条件:1、对于任意的x、y,y∈R,都有f(x+y)=f(x)+f(y).2、当x>0时,f(x) 已知函数f(x)是定义域R上单调递减的奇函数,当x、y属于R时,都有f(x+y)=f(x)+f(y),f(1)=1,求f(x)在[-3,3]的值域. 已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+(y),试判断f(x)在(0,+无限)上的单调性, 已知定义在R*上的函数f(x)满足下列条件:1、对定义域内任意x,y,恒有f(xy)=f(x)+f(y);2、当x>1时,f(x) 定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的x,y恒有f(x+y)=f(x)×f(y)证明,当x