证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 15:15:25
xQJ@=t.CXe9h "/BAj&i|D&)d[o;fVy:_>ɋUzzXuiMn Xagiq=Yi/y0*&Xf3LgR:~M:k!lb*'ݙ:muQx{d
Ac%rpƵ^ڌTA"*86"D.H`&A_CBA{k"$rD2
$rena.}cRZ]I_7X.>L7O:=v
证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等于0
证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等于0
证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等于0
设f(xo)=a≠0.∵函数f(x)在点x0连续,∴ 对于ε=|a|/2>0 存在δ>0 当x∈﹙x0-δ,x0+δ﹚=U(x0)
时 |f(x)-f(xo)|<ε.
即x∈U(x0) -|a|/2<f(x)-a<|a|/2
a--|a|/2<f﹙x﹚<a+ |a|/2 即
f﹙x﹚∈a的 |a|/2邻域,注意a≠0,a的 |a|/2邻域 当然不含零.
即 当x属于U(x0)时,f(x)不等于0
证明:若函数在区间[x0-a,x0]上连续,在(x0-a,x0)内可导,且limx->x0-(x0左极限)f'(x)存在,则limx->x0-(左极限)f'(x)=x0点左导数
微积分 函数连续性 证明若函数f(x)在点x0处连续且f(x)≠0,则存在x0的某一邻域U(x0),当x∈U(x0)时,f(x)≠0
证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等于0
即证明复合函数的连续性诺函数f(x)在点x0上连续,g(u)在点u0上连续,且uo=f(x0),证明函数g[f(x)]在点xo上连续.
设函数f(x)满足条件f(x+y)=f(x)+f(y),且f(x)在x=0处连续,证明f(x)在所有的点x0处连续
证明函数 f(x)={ x+1,x0在点x=0处连续
设函数f(x)在x0处有三阶导数,且f(x0)=0,f'''(x0)≠0,试证明点(x0,f(x0))必为拐点
设函数f(x)在点x0连续,且 limf(x)/x-x0=4,则f(x0)= x→x0limf(x)/x-x0=4,则f(x0)=x→x0
一道利用泰勒公式的证明题设函数f(x)在点附近有n+1阶连续导数,且f'(x0)=f''(x0)=...=fn(x0)=0,f(n+1)(x0)≠0 证明:若n为奇数,则点x0是f(x)的极值点;若n为偶数,则点x0不是f(x)的极值点
证明若f(x)在点x0处连续且f(x0)不等于0,则存在x0的某一邻域U(X0),当x属于这一邻域时,f(x)不等于0
连续,导数,极限综合题,函数f 在x=x0处连续,且lim(x->x0) f(x)/(x-x0)=A 求 f'(x0)=?
证明函数连续性的问题设函数f(x)和函数在点x0连续证明z(x)=max{f(x),g(x0)}也在x0连续答案分为2个部分求,一是f(x0)=g(x0),二是f(x0)不等于g(x0)我不明白为什么函数既然是连续
1、若函数f(x)在点x=1处连续,则limf(x)存在 2、若limf(x)存在,则函数 f(x)在点x=1处连续3、若函数f(x)在点x=x0处有导数且等于0,则f(x)在点x=x0处有极值4、若f(x)在点x0处不可导.则f(x)在点x0
大一微分题已知函数f在点x0处连续,在x0的某左半领域(x0-δ,x0)内可导,并且[lim x→x0-]f'(x)=k.证明函数f在x0点存在左导数且等于k应该是用拉格郎日中值定理证的吧,详细点嘛
求高等数学课本上连续函数题答案证明:若函数f(x)在点x0连续且f(x)不等于0,则存在x0的某一领域U(x0),当x属于U(x0)时,f(x)不等于0
若函数f(x)在x0点处连续,则f(x)的导函数在x0点处连续.这句话对吗?
用介值性定理证明:若f(x)与g(x)在[a,b]上连续,且f(a)g(b),则必存在点 x0属属于(a,b),满足f(x0)=g(x0).
lim(x->x0)f(x)/x极限存在,且f(x)在x0处连续试问f(x)在x0处是否可导,请证明