已知函数f(x)=2sin(2x+π/6),若函数f(x0)=2,求满足条件所有x0组成的取值集合

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 17:56:03
已知函数f(x)=2sin(2x+π/6),若函数f(x0)=2,求满足条件所有x0组成的取值集合
x){}K}6uCFQqfQ}3M0{:* 5y/m~6w۞u6Ra1F0/.H̳_^QL) "Y_I fgca ,

已知函数f(x)=2sin(2x+π/6),若函数f(x0)=2,求满足条件所有x0组成的取值集合
已知函数f(x)=2sin(2x+π/6),若函数f(x0)=2,求满足条件所有x0组成的取值集合

已知函数f(x)=2sin(2x+π/6),若函数f(x0)=2,求满足条件所有x0组成的取值集合
f(x0)=2sin(2x0+π/6)=2
sin(2x0+π/6)=1
2x0+π/6=π/2+2kπ,k∈Z
∴x0=π/6+kπ,k∈Z
{x0|x0=π/6+kπ,k∈Z}

f(x0)=2sin(2x0+π/6)=2
所以sin(2x0+π/6)=1
所以2x0+π/6=π/2+2kπ
所以x0=π/6+kπ (k∈Z)
所以集合是:{x0|x0=π/6+kπ (k∈Z)}