正弦函数、余弦函数的有界性是什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:57:53
正弦函数、余弦函数的有界性是什么?
xN@_Ž2Ϣ $,jRhb"@ D?x;-SBK6əs{\#p'Px{2y? ~[ʔwQuw&_ܤxecӘ3BRC -P\Xn_"Y^^/-񣎉TJ'Sg*#C28pM"9xϨ)8L ƀc0N`/nKC}?|0rw5ed^A߇Z5ooƤiSy6U,JZ0{Fq:fQH x5t[O ] & Pv'}

正弦函数、余弦函数的有界性是什么?
正弦函数、余弦函数的有界性是什么?

正弦函数、余弦函数的有界性是什么?
代数意义:函数的绝对值小于等于1,表达式|sinx|≤1,|cosx| ≤1,即1是正、余弦的一个界.进一步,1是他们界中的最小者,因此,1也叫他们的确界.
几何意义:函数图象分布在一个带形区域内,即直线y=-1和y=1之间.

就是指函数图象上下有界
y=sinx和y=cosx的图象最大最小值都为+1和-1,反映在图像上就是有界的