如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A把图1中△ABC变成图2中的四边形ABCD,BP、CP仍然是∠ABC、∠BCD的平分线,猜想∠BPC与∠A、∠D的数量关系是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 12:44:26
如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A把图1中△ABC变成图2中的四边形ABCD,BP、CP仍然是∠ABC、∠BCD的平分线,猜想∠BPC与∠A、∠D的数量关系是?
xSjA}(Xfgf7$r/"3]ڍ^EX[#6U7-,J >Jܟx+nV(H.n;;|Svϻj{Vw _U~ك|n;:z2:uWuoX xc41MENy %%덎/o͝V/|_©?v5?йRf+_/,;KS-ys6ܔWrv^;o;h6

如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A把图1中△ABC变成图2中的四边形ABCD,BP、CP仍然是∠ABC、∠BCD的平分线,猜想∠BPC与∠A、∠D的数量关系是?
如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A
把图1中△ABC变成图2中的四边形ABCD,BP、CP仍然是∠ABC、∠BCD的平分线,猜想∠BPC与∠A、∠D的数量关系是?

如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A把图1中△ABC变成图2中的四边形ABCD,BP、CP仍然是∠ABC、∠BCD的平分线,猜想∠BPC与∠A、∠D的数量关系是?
结论:∠P=1/2(∠A+∠D)
[情况1]AB‖CD
则∠PBC+∠PCB=1/2(∠ABC+∠BCD)=90°
∠P=180°-90°=90°
因为∠A+∠D=180°
所以∠P=1/2(∠A+∠D)
[情况2]AB不平行CD
则∠PBC+∠PCB=1/2(∠ABC+∠BCD)=1/2(180°-∠A+180°-∠D)=1/2(360°-∠A-∠D)
所以∠P=180°-1/2(360°-∠A-∠D)=1/2(∠A+∠D)
结论成立

如图1,bp cp是任意三角形abc中角abc角acb的角平分线,如果把三角形ABC变成四边形ABCD.BP、CP是任意△ABC中∠ABC、∠ACB的角平分线,可知∠BPC=90°+1/2如果把三角形ABC变成四边形ABCD,BP、CP仍是∠ABC、∠A 如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A,把图1中△ABC变成图2中的四边形ABCD,BP、CP仍然是∠ABC、∠BCD的平分线,猜想∠BPC与∠A、∠D的数量关系是? 如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A,把图1中△ABC变成图2中的四边形ABCD,BP、CP仍然是∠ABC、∠BCD的平分线,猜想∠BPC与∠A、∠D的数量关系是? 如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A把图1中△ABC变成图2中的四边形ABCD,BP、CP仍然是∠ABC、∠BCD的平分线,猜想∠BPC与∠A、∠D的数量关系是? 如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A,把图1中△ABC变成图2中的四边形ABCD,BP、CP仍然是∠ABC、∠BCD的平分线,猜想∠BPC与∠A、∠D的数量关系是? 如图,在△abc中,ab=ac,点p是bc边上任意一点,是说明ab²-ap²=bp乘cp 如图,在△ABC中,①P是△ABC内任意一点,∠BPC与∠A有怎样的大小关系?如果BP,CP分别如图,在△ABC中,①P是△ABC内任意一点,∠BPC与∠A有怎样的大小关系?如果BP,CP分别平分∠ABC、∠ACB①已知∠A=60°, 如图,△ABC中,AB=AC,点P是边上任意一点,试说明AB²-AP²=BP·CP 如图,在△ABC中,BD,CD是内角平分线,BP,CP分别是∠ABC,∠ACB的外角平分线. 如图,在三角形ABC中,AB=AC,点P是边BC上任意一点,试说明AB^2-AP^2=BP乘CP 如图,已知三角形ABC中,AB=AC,P是BC边上任意一点,连结AP.求证; AC^2=AP^2+CP×BP 如图,在三角形ABC中,AB=AC,P是BC上任意一点,连接AP,求证:BP×CP=AB²—AP² 如图在△abc中,ab>ac,ap是角平分线,求证:ab-ac>bp-cp 已知如图三角形ABC中,∠A=64°若三角形ABC的两个外角平分线BP(1)若三角形ABC的两个外角平分线BP,CP交于点p,求∠P的度数.(2)如果BP,CP分别是∠B,∠C两内角平分线,求∠P(3)如果BP,CP中一个是内角平分 如图,△ABC中,∠A=60°,BP、BQ三等分∠ABC,CP、CQ三等分∠ACB(1)求∠BPC、如图,△ABC中,∠A=60°,BP、BQ三等分∠ABC,CP、CQ三等分∠ACB(1)连接PQ,猜想∠BQP不是∠BPQ,是∠BQP 如图P是△ABC内任一点,请说明AB+AC大于BP+CP~ 如图,已知BP、CP是△ABC的外角平分线,证明点P在∠BAC的平分线上. 在任意三角形ABC中有一点P使得2AP+BP+CP最小最好有图..