角ADC=角ABC,角1+角2=180°,AD为角FDB的角平分线,求证BC为角DBE的平方线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:30:31
角ADC=角ABC,角1+角2=180°,AD为角FDB的角平分线,求证BC为角DBE的平方线
xRj@cH75JeF#Ej[\ ]5 ZBh@M[*i1-S_Yz-r.lfsgl̾Zc.6۩Ư"Y77pOmswvc;= :Ԡ>4i<ʏFY451JըN"qQDv+( omWQH DWxMp4Qo6Mɂ*LdJBMfb2VE9$3jc3/H@T"t{N^$yEET'$5‹$rH Q^`\(0ٯKמ|^O;ӳl;>,,]xl0C

角ADC=角ABC,角1+角2=180°,AD为角FDB的角平分线,求证BC为角DBE的平方线
角ADC=角ABC,角1+角2=180°,AD为角FDB的角平分线,求证BC为角DBE的平方线
 

角ADC=角ABC,角1+角2=180°,AD为角FDB的角平分线,求证BC为角DBE的平方线
∵DB是一条直线,且∠1+∠2=180°
∴∠EBD+∠BDC=180°
那么AE//FC(同旁内角互补,两直线平行)
得:∠ABD=∠BDC (两直线平行,内错角相等)
又∵∠ADC=∠ABC
∴∠ADF=180°-∠ADC=180°-∠ABC=∠EBC
∠ADB=∠ADC-∠BDC=∠ABC-∠ABD=∠DBC
∵AD为∠FDB平分线
∴∠ADF=∠ADB
那么:∠EBC=∠DBC
∴BC为∠DBE平分线.