如图1,抛物线y=ax^2+bc+c(a≠0)的顶点为c(1,4),交x轴于A、B两点,交y轴于D,其中B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:39:22
如图1,抛物线y=ax^2+bc+c(a≠0)的顶点为c(1,4),交x轴于A、B两点,交y轴于D,其中B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若
xVYOW+VHF,6cc`Hy@jlCi jDh!aҲDj R ;6O~g=h{YsO}5GC{|j1z24/Vg.a. *A;\Nr{x_OZf۴W2~es Ξe e OgZ\amI;l2$sP8{2IAlۂXA7LOqd>o<%-[}ahp0M.g#ak^6N̰>&V4]>6Â;o#K ;tc} qx h z,5L~AgDᔖ+,lQӧ-*&2pm-7K}W%lLHIr4@JhJ$@L#'X:1ƍ;޷žW}W:Wlݏc+Ot}tޯijQwMTX{s{G\}ūu(:;wb[G]oSx]*InJmsKb[TdKVuqWqɥqW4.J(G՚JWr/%_Z1IP4-B cP3'L)E@iOHb+̰n!,(;p [Ko L87J ߀i^*Q/GDl"T.N&J'HK@ V Kô^<}|ɲd rݼUd^BKMp@J3Nl ܢzMТƦ!$؄)s 'XZR9dEJ2(&Q*(?Ft-*,+, -:kB5m :Ч_ glG}hO)=r\bI`bv6`‹{PM(tIB8dpPa9=ѲY6s|GT*9iS$?`J=in)oq'S34@;=,FRly yNsI!bo@|C M~4CSJNȏ* !bujg*cnnyO[yG9I$ "݅T{8BSfSlsIx=TR`6OBڍj'\ur* җzO7F9z(s1诮:

如图1,抛物线y=ax^2+bc+c(a≠0)的顶点为c(1,4),交x轴于A、B两点,交y轴于D,其中B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若
如图1,抛物线y=ax^2+bc+c(a≠0)的顶点为c(1,4),交x轴于A、B两点,交y轴于D,其中B的坐标为(3,0)
(1)求抛物线的解析式;
(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线 PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小.若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点过点M 作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,请说明理由.

如图1,抛物线y=ax^2+bc+c(a≠0)的顶点为c(1,4),交x轴于A、B两点,交y轴于D,其中B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若
(1)设所求抛物线的解析式为:y=a(x-1)2+4,依题意,将点B(3,0)代入,得:
a(3-1)2+4=0
解得:a=-1
∴所求抛物线的解析式为:y=-(x-1)2+4
(2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
∵点E在抛物线上且点E的横坐标为2,将x=2代入抛物线y=-(x-1)2+4,得
y=-(2-1)2+4=3
∴点E坐标为(2,3)
又∵抛物线y=-(x-1)2+4图像分别与x轴、y轴交于点A、B、D
∴当y=0时,-(x-1)2+4=0,∴ x=-1或x=3
当x=0时,y=-1+4=3,
∴点A(-1,0),点B(3,0),点D(0,3)
又∵抛物线的对称轴为:直线x=1,
∴点D与点E关于PQ对称,GD=GE…………………②
分别将点A(-1,0)、点E(2,3)代入y=kx+b,得:
解得:
过A、E两点的一次函数解析式为:y=x+1
∴当x=0时,y=1
∴点F坐标为(0,1)
∴ ………………………………………③
又∵点F与点I关于x轴对称,
∴点I坐标为(0,-1)
∴ ………④
又∵要使四边形DFHG的周长最小,由于DF是一个定值,
∴只要使DG+GH+HI最小即可
由图形的对称性和①、②、③,可知,
DG+GH+HF=EG+GH+HI
只有当EI为一条直线时,EG+GH+HI最小
设过E(2,3)、I(0,-1)两点的函数解析式为:y=k1x+b1(k1≠0),
分别将点E(2,3)、点I(0,-1)代入y=k1x+b1,得:
对称轴:X=1;根据B(3.0)A(-1;0)容易解出:
a=-1;b=2;c=3;
y=-X^2+2X+3;
先设一下T(X;-X^2+2X+3);D(0;3);
则M(X;0);N (n;3n+3)
根据三角形相似原理;边的比值:
MN:MD=MD:BD;
因此:MD^2=MNXBD;
根据:MN∥BD;则有三角形AMN∽ABD;
AM:AB=MN:BD;
另外再加一个条件:△BOD是是等腰直角三角形;角OBD为45°;
好,现在进行数据代入:
可得:(X^2+9)^2=9[(n-X)^2+(3n+3)^2];
[3√2(X+1)]^2=16[(n-X)^2+(3n+3)^2];
对两个式子进行处理:
8(X^2+9)^2=81(X+1)^2;
解得:2√2X^2-9X+9(2√2-1)=0;
进行判别式检验:△=b^2-4ac=81-72√2(2√2-1)=81+72√2-288=-105,17


1.求解析式:
顶点为C(1,4),所以,-b/(2a)=1,a+b+c=4
又B(3,0)在抛物线上,则:9a+3b+c=0
解以上三个方程,得:a=-1,b=2,c=3
即抛物线的解析式为y=-x^2+2x+3

如图,抛物线y=ax^2+bx+c(a 如图,抛物线y=ax²+c(a 如图,抛物线Y=AX²-5ax+4经过△ABC的三个顶点,已知BC‖x轴,点A在x轴上,点C在y上,且AC=BC(1)求抛物线的对称轴(2)写出A,B,C三点的坐标并求抛物线的解析式 如图,抛物线y=ax^2+bx+c,OA=OC,下列关系中正确的是A.ax+1=bB.ab+1=cC.bc+1=aD.a/b+1=c 如图,已知抛物线y=ax^2+bx+c经过A(-1,0)B(3,0)C(0,-3),直线BC经过B.C两点(1)求抛物线的函数解如图,已知抛物线y=ax^2+bx+c经过A(-1,0)B(3,0)C(0,-3),直线BC经过B.C两点(1)求抛物线的函数 如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,已知BC‖x轴,点A在x轴上,点C在y如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴; 如图,抛物线Y=ax2-2ax-b(a 如图,抛物线y=ax²-2ax-3与x轴交于点A,B(A点在B点左侧),与y轴交于点C,且OB=OC(1)求点A,B,c坐标 (2)连接BC,在BC下方的抛物线y=ax²-2ax-3上是否存在点D,使△BCD的面积最大?若存在,请求出△BCD的最 如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC.求抛物线解 数学如图14,点 A(-2,0) 、B(4,0) 、C(3,3) 在抛物线 y= ax平方+bx+c 上,点D 在y 轴上,且 DC垂直于BC ,如图14,点 A(-2,0) 、B(4,0) 、C(3,3) 在抛物线 y= ax平方+bx+c 上,点D 在y 轴上,且 DC垂直于BC ,角 1 分钟前 提问 抛物线证明抛物线:y=ax^2+bx+c a 如图,抛物线y=x²-(a+b)x+c^2/4,其中a.b.c分别是三角形ABC的角A角B角C的对边设有直线y=ax-bc与抛物线交于点E.F,与y轴交于点M抛物线与y轴交于点N,若抛物线的对称轴为x=a,S△MNE:S△MNF=5:1求三角形A 如图,顶点座标为(2.-1)的抛物线y=ax2+bx+c(a≠0)如图,顶点座标为(2.-1)的抛物线y=ax²+bx+c(a≠0)与y轴交与点C(0,3),与X轴交于A、B两点.(1)求抛物线的表达式.(2)设抛物线的对称轴与直线BC交 如图,已知抛物线y=ax的平方+bx+c经过A(-1,0),B(3,0),直线BC经过B,C两点.(1)求抛物线的函数解析式;(2)P是直线BC下方抛物线上的一个动点,连接BP,CP,求△BCP面积的最大值及此时点P的坐标. 如图,已知抛物线y=ax+bx+c,4a>c是否正确 如图抛物线Y=ax^2-2ax-3a交x轴于A,B,交y轴于D点,点C的横坐标为2.求抛物线的对称轴及A,B两点的坐标如图抛物线Y=ax^2-2ax-3a交x轴于A,B,交y轴于D点,点C的横坐标为2.求1,抛物线的对称轴及A,B两点的坐标2, 如图,抛物线y=ax*2-4ax+3a(a 如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.1 .求抛物线的解析式及对称轴