过双曲线的一个交点F2作垂直于实轴的弦PQ,F1是另一焦点,若角PF1Q=π/2,则双曲线的离心率e等于RT
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:39:44
x){iϳٛ|V˓
OvzknFOy:-Ov=]7-@%O,q3|6ce@
[U^b 7@
F:O;f"|>_ 4/(&Ht~ e//{
+Ot7<_|Ryn @G܌³Ά'&'%%j$m젾s
~j4pdcA0]2C0WF _RI
过双曲线的一个交点F2作垂直于实轴的弦PQ,F1是另一焦点,若角PF1Q=π/2,则双曲线的离心率e等于RT
过双曲线的一个交点F2作垂直于实轴的弦PQ,F1是另一焦点,若角PF1Q=π/2,则双曲线的离心率e等于
RT
过双曲线的一个交点F2作垂直于实轴的弦PQ,F1是另一焦点,若角PF1Q=π/2,则双曲线的离心率e等于RT
要详细过程!由对称可知,PF1=QF1,则PF1=√2PF2=√2F1F2 所以e=c/a=2c/2a=1+√2
对称可知,PF1=QF1,则PF1=√2PF2=√2F1F2 e=c/a=2c/2a=F1F2/√2F1F2-PF2=1/√2-1=1+√2
过双曲线的一个交点F2作垂直于实轴的弦PQ,F1是另一焦点,若角PF1Q=π/2,则双曲线的离心率e等于RT
过双曲线的一个交点F2作垂直于实轴的弦PQ,F1是另一焦点,若角PF1Q=π/2,则双曲线的离心率e等于
一道双曲线题目已知双曲线 x^2/a^2 - y^2/b^2 =1 左右焦点分别为F1 、F2,过点F2作与x轴垂直的直线于双曲线一个交点为P,且角P F1 F2=30°,则双曲线的渐进线方程为_____要具体的过程 答案是±√2x
过双曲线的一个焦点F2作垂直于实轴的弦PQ,F1是另一焦点,角PF1Q为直角,则双曲线离心率
已知F1,F2为双曲线的焦点,过F2作垂直于x轴的直线交双曲线于P,角PF1F2=30°,求双曲线的渐近线方程
F1,F2为双曲线的焦点,过F2作垂直于x轴的直线交双曲线于P,且角PF1F2等于30度,求双曲线渐近线方程
过双曲线的一个焦点F2作垂直于实轴的弦PQ,F1是另一焦点,若∠PF1Q=π 2 ,则双曲线的离心率e等于( )这个题什么意思啊.过F2作垂直于实轴的弦不就是坐标轴吗?.怎么还能出来π/2呢?来个好人
椭圆X^2/4+y^2=1的两个焦点为F1,F2,过F2作垂直于x轴的直线于椭圆相交,一个交点为P,则PF1绝对值等于?
过双曲线的一个焦点F2作垂直于实轴的弦PQ,F1是另一个焦点,若 角PF1Q=90°,则双曲线的离心率是( )
设双曲线的两个焦点为f1.f2过f2作双曲线实轴所在直线的垂线交双曲线于点p若|pf2|=2|f1f2|则双曲线离心率
设双曲线的半焦距为c,两条准线间的距离为d,且c=d,则双曲线的离心率为过双曲线的一个焦点F2作垂直于实轴的弦PQ,F1是另一焦点,PF1Q=,则这条双曲线的离心率等于______________________.(这道题那个
双曲线的性质,求双曲线的渐近线方程已知F1,F2是双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0),过F2作垂直于x轴的直线交双曲线于点P,且角F1PF2=60度,求双曲线的渐近线方程
双曲线的性质,求双曲线的渐近线方程已知F1,F2是双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0),过F2作垂直于x轴的直线交双曲线于点P,且角F1PF2=60度,求双曲线的渐近线方程
已知f1f2分别是双曲线x^2/a^-y^2/b^2=1的左右两焦点 过f2且垂直于x轴的直线与双曲线的一个交点为p 若|f1f2|=2庚号下2|pf2|求该双曲线的渐近线方程
过双曲线x^2/a^2=1的右焦点F2作垂直于实轴的弦PQ,F1是左焦点,若角PF1Q=90度,此双曲线的离心率为?
设双曲线E:x^2/a^2-y^2/b^2=1的左右焦点分别为F1,F2其上的任意一点P满足向量PF1·向量F2P小于等于2a^2,过F1作垂直于双曲线实轴的弦长为8.求双曲线E得方程.若过F1的直线交双曲线于AB两点,求向量F2A·
双曲线习题.已知F1,F2是双曲线X2/A2-Y2/B2=1(A>0,B>0)的左、右两焦点,过F2作垂直于X轴的直线交双曲线于点P,若∠PF1F2=45°时,求双曲线的渐近线方程.我算出来是根号下带根号的结果,求验算。
(急!)高二数学圆锥曲线与方程1.过双曲线的一个焦点F2作垂直与实轴的弦PQ.F1为另一个焦点,若角PF1Q=90度,则双曲线的离心率=?2.直线y=1-x交椭圆mx^2+ny^2=1于M.N两点,弦MN的中点为p,若OP的斜率等